立体图形的涂色问题
- 格式:doc
- 大小:77.50 KB
- 文档页数:3
正方体涂色问题记忆口诀1. 前言哎呀,说到正方体涂色问题,大家是不是有点摸不着头脑啊?这可不是简单的画个方块,涂上颜色那么简单。
我们得从不同的角度去看看,才能真正理解这道题。
首先,正方体有六个面,每个面可以涂上不同的颜色,想想就觉得有点眼花缭乱。
不过别担心,今天咱们就来聊聊如何记住这些涂色的诀窍,让你轻松应对这个问题,赢得满堂彩!2. 正方体的基本知识2.1 正方体的构成好啦,先简单介绍一下正方体。
正方体就像一个小盒子,有六个面,八个顶点,还有十二条边。
每个面都是正方形,大家都知道,正方形四条边都相等,角度都是90度。
所以,当我们在给正方体涂色的时候,就得考虑每一个面。
想象一下,如果你把正方体放在桌子上,那这个盒子就成了我们涂色的舞台。
2.2 涂色的原则接下来,咱们来说说涂色的原则。
涂色不是随便涂涂就好了,要有策略!比如,假设我们有三种颜色:红、蓝、绿。
涂的时候,先想好一个顺序。
比如,你可以先涂上面的面,再涂侧面,最后涂下面的面。
这样一来,涂色就不会乱了套,能让你有条不紊。
记住,要像做菜一样,先准备好材料,然后再下锅。
3. 记忆口诀的妙用3.1 口诀的魔力那么,如何记住这些涂色的步骤呢?这就要靠我们的记忆口诀了!大家听好,咱们可以用“上红、左蓝、右绿、下白”的口诀来记忆。
这样一来,涂色的时候就不会忘记了,每次看到正方体,就能立刻想起这四个方位的颜色。
是不是觉得这个口诀简直像金子一样珍贵啊?用好了,绝对能让你在涂色题上如鱼得水。
3.2 趣味游戏涂色不光是个脑筋急转弯的游戏,还是个非常有趣的挑战!想象一下,你和朋友们一起玩“涂色大比拼”,谁能在最短的时间内完成涂色,谁就能获得小礼物。
通过这种游戏,不仅能加深记忆,还能增进友谊。
谁说学习就得乏味无聊呢?只要用心,学习也可以像春风化雨,轻松愉快。
4. 总结最后,正方体涂色问题其实并不复杂,只要我们掌握了基本的知识,记住口诀,找到乐趣,学习就能变得轻松自在。
第五讲立体图形染色问题
姓名成绩
【例1】一个正方体棱长7cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
【例2】一个长方体长9cm,宽4cm,高8 cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
〖练习1〗一个正方体,表面涂成红色,切成棱长1cm的小正方体,期中一面涂色的有216个小正方体,这个正方体的体积是多少?
〖练习2〗一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切n次后,要使各面上均没有红色的小方块为24块,则n的取值是________。
综合试题
1、某学生语文和数学平均分为90分,语文和英语的平均分为94分,英语和数学平均分为91分。
这位学生语文考()分,数学考()分。
2、甲仓库有大米95.8吨,乙仓库有大米54.5吨。
要从甲仓库中运()吨到乙仓库后,乙仓库中的大米吨数是甲仓库中的2倍。
3、有一组数据如下图排列:
一二三四五
1 2 3 4 5
9 8 7 6
10 11 12 13
17 16 15 14
······如此规律,1991排在第()列。
4、一个长方体,如果长减少2厘米,宽、高不变,它的体积减少48立方厘米,如果宽增加3厘米,长、高都不变,它的体积增加99立方厘米,如果高增加4厘米,长、宽都不变,它的体积增加352立方厘米,求原长方体的表面积是多少平方厘米?。
五年级:美妙数学之“正方体涂色问题”(0807五)
我们人教版五年级下册学过了探索图形,你还记得吗?
探索图形中的其中一类就是正方体涂色问题,把小正方体拼成大正方体,这样的大正方体的规格可以简单地表示成2×2×2,3×3×3……n×n×n,问,三面涂色,两面涂色,一面涂色的和没有涂色的小正方体各有几个?
大家回忆一下这样的问题我们一般怎样解决呢?
算三面涂色的小正方体的个数方法是这样的:三面涂色的小正方体都是大正方体的顶点所在的小正方体,大正方体一共有8个顶点也就是三面涂色的小正方体有8个;两面涂色的小正方体分布在大正方体的棱处,但要去掉头尾,所以两面涂色小正方体个数为(n-2)×12;一面涂色小正方体分布在大正方体的面上,但是要去掉面上一圈,也就是(n-2)×(n-2)×6;没有涂色的小正方体分布在内心,也就是要剥去大正方体华丽的外表,所以没有涂色的小正方体个数是(n-2)×(n-2)×(n-2)。
同学们想起来了吗?那我的问题来了,正方体是这样那长方体呢?敬请期待下一期的分享。
一、表面涂色问题:对于棱长大于2的长方体和正方体,表面涂色后切成小正方体:三面涂红色的在顶点处 两面涂红色的在棱长处 一面涂红的表面中间部分 每面都没涂色的只有正方体体内。
重点:熟练掌握表面涂色问题的基本类型. 难点:复杂三视图问题.【例 1】右图是333⨯⨯正方体,如果将其表面涂成红色,那么其中二面、三面被涂成红色的小正方体各有多少块?例题精讲知识框架重难点表面涂色与三视图【考点】长方体与正方体【难度】☆☆【题型】解答【解析】三面涂红色的只有8个顶点处的8个立方体;两面涂红色的在棱长处,共(32)4(32)4(32)412-⨯+-⨯+-⨯=块;【答案】8,12【巩固】右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中二面、三面被涂成红色的小正方体各有多少块?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】三面涂红色的只有8个顶点处的8个立方体;两面涂红色的在棱长处,共(42)4(52)4(62)436-⨯+-⨯+-⨯=块;【答案】8,36【例2】将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】长:3+1+1=5厘米;宽:1+1+1=3厘米;高:1+1+1=3厘米;所以原长方体的表面积是:(3⨯5+3⨯5+3⨯3)3⨯2=78平方厘米.【答案】78【巩固】一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切_______次后,要使各面上均没有红色的小方块为24块.【考点】长方体与正方体【难度】☆☆【题型】填空【解析】沿着长边等距离切5刀,可切为516+=块;沿着宽边等距离切4刀,可切为415+=块;沿着高边等距离切n刀,可切为1n+块.由题意可知,长方体每一个面的外层是涂有1面(或2面、或3面)的小方块,所以,各面均没有红色的小方块共(62)(52)(12)12(1)-⨯-⨯+-=-个,因各面n n 均没有红色的小方块为24块,所以,12(1)24n=.n-=,解得3【答案】3【例3】右图是115⨯⨯长方体,如果将其表面涂成红色,再切成5个小正方体,那么各个正方体有几面被涂成红色?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】两端的正方体有5面,中间的正方体有4面;【答案】两端的正方体有5面,中间的正方体有4面;【巩固】右图是225⨯⨯长方体,如果将其表面涂成红色,再切成20个小正方体,共有几种不同的涂色情况?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】共有两种不同的染色情况:顶角上的8个正方体有3面,棱上的12个正方体有2面;【解析】共有两种不同的染色情况:顶角上的8个正方体有3面,棱上的12个正方体有2面【例4】小华用相同的若干个小正方体摆成一个立体(如图2)。
可编辑修改精选长方体正方体染色问题、沉浸问题、三视图全文完整版教学内容教学目标掌握长方体正方体染色问题、沉浸问题、三视图重点染色问题、沉浸问题、三视图难点染色问题、沉浸问题、三视图教学过程一、染色问题一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。
(1)三个面涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。
(2)两个面涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。
(3)一个面涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。
(4)六个面都没有涂色的在大正方体的中间,有两种算法:算法1: 1000-8-96-384=512(个);算法2: 8×8×8=512(个)。
公式:(1)正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)3个.一面被涂色的小立方体为(n-2)2*6个.两面被涂色的小立方体有(n-2)*12个.三面被涂色的有8个.(2)长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个【例 1】下图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:1; 1面:6;两面:2;三面:8【巩固】下图是456⨯⨯长方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?看如右下图,那么他最少用了_____块木块。
2022-2023学年专题卷小升初数学几何问题精选真题汇编强化训练(提高)专题08立体图形的染色问题考试时间:100分钟;试卷满分:100分一.选择题(共6小题,满分12分,每小题2分)1.(2分)(2022秋•威县期末)在图形中再给1个格子涂上颜色,使涂色部分成为一个轴对称图形,一共有()种不同的涂法.A.2B.3C.4【思路点拨】根据轴对称图形的概念与轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.【规范解答】解:画图如下:答:在图形中再给1个格子涂上颜色,使涂色部分成为一个轴对称图形,一共有4种不同的涂法.故选:C。
【考点评析】此题主要考查了学生对轴对称意义的灵活运用,解题关键是找对称轴,按对称轴的不同位置得出不同图案.2.(2分)(2022秋•兴化市期中)如图,从一个体积是30立方厘米的长方体木块中,挖掉一小块后在表面涂上红漆,三面都涂色的小正方体有()个。
A.8B.9C.10D.11【思路点拨】因为5×2×3=30,根据立体图形的知识可知:三个面均涂色的是各顶点处的小正方体加上挖掉那块左、右和后面相邻的3个;根据上面的结论,即可求得答案。
【规范解答】解:长方体三面都涂色的小正方体,在8个顶点处,加上挖掉那块左、右和后面相邻的3个。
8+3=11(个)答:三面都涂色的小正方体有11个。
故选:D。
【考点评析】此题考查了立方体的涂色问题;注意长方体表面涂色的特点及应用。
3.(2分)(2022秋•洪湖市期末)给一个正方体的表面涂上红、黄、蓝三种颜色,任意抛一次,使红色面朝上的可能性最大,蓝色面和黄色面朝上的可能性相等,需要有()个面涂红色。
A.2B.3C.4【思路点拨】一个正方体有6个相同的面积,这6个面分别涂上红、黄、蓝三种颜色,任意掷一次,要使红色面朝上的可能性最大,蓝色面和黄色面朝上的可能性相同,涂红色的面数最多,涂蓝色、黄色的面数相同。
6个面只能4份涂红色,蓝色、黄色各涂1份。
立体图形的涂色问题
例1.一个表面都涂满红色的立方体,在它的每个面上等距离地切两刀,可得到27个小立方体,而且切面都是白色,这27个小立方体中,一面是红色的有多少个?二面是红色的有多少个?三面是红色的有多少个?各面都没有红色的有多少个?
解析:仔细观察
(1)一面涂有红色的小方块位于每个面的中心。
有6个
(2)二面涂有红色的小方块位于每条棱的中间。
有12个
(3)三面涂有红色的小方块位于每个角上,永远都是8个。
(4)各面没有红色的小方块位于立方体的内部,用总的小方块的数量减去一面、二面、三面涂红的块数,就可以了。
有1个
进一步归纳:对于一个n×n×n的正方体,其涂色情况如下:(1)三面涂色的:8个
(2)二面涂色的:(n-2)×12个
(3)一面涂色的:(n-2)×(n-2)×6个
(4)各面没涂色的:总的个数减去上面三类的总个数
或(n-2)×(n-2)×(n-2)个
例2.有个长方体,长、宽、高分别是3、5、7(单位:厘米),分别将其表面涂上红色,然后将它们分割成棱长为1厘米的小立方体,一面是红色的有多少个?二面是红色的有多少个?三面是红色的有多少个?各面都没有红色的有多少个?
解析:(1)三面涂色的在角上,有8个
(2)二面涂色的在每条棱中间,长上面有1×4=4个,宽上面有
3×4=12个,高上面有5×4=20个,总共36个
(3)一面涂色的在每个面的中间,上、下面上有1×3×2=6个,左、右面上有3×5×2=30个,前、后面上有1×5×2=10个,总共46个
(4)各面都没涂色的有3×5×7-8-36-46=15个
进一步归纳:对于一个a×b×c的长方体(a、b、c表示长、宽、高),其涂色情况如下:
(1)三面涂色的:8个
(2)二面涂色的:[(a-2)+(b-2)+(c-2)]×4个即(a+b+c-6)×4个
(3)一面涂色的:[(a-2)×(b-2)+(a-2)×(c-2)+(b-2)×(c-2)]×2个
(4)各面没涂色的:总的个数减去上面三类的总个数
或(a-2)×(b-2)×(c-2)个
练习:
1.一个棱长为3厘米,在其表面涂满红漆,然后切成棱长都是1分米的小正方体,问三面、二面、一面涂有红漆各有多少个?六面都没红色有多少个?(答案:8、12、6、1)
2.一个长方体木块,长、宽、高分别是5、3、4分米,在它六个面上漆满油漆,然后踞成棱长都是1分米的正方体木块。
问这些小正方体木块中,三面、二面、一面有油漆的各多少个?各面都没有油漆的有多少个?(答案:8、24、22、6个)
3.把若干个相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上颜色的有36个,那么这些小正方体一共有多少个?(答案:125个)
4.把一长方体表面涂红,分成若干相同的小长方体,其中两面为红的小长方体恰好12块,至少要把这长方体分成多少个小长方体?(答案:20个)
5.有三个长、宽、高分别为7、9、11;5、7、9;3、5、7(单位:厘米)的长方体,分别将其表面涂上红色,然后将它们分割成棱长为1厘米的小立方体,其中至少一面涂有红色的小立方体有多少个?(答案:678个)
6.三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰好是三个连续自然数。
给这三个长方体表面涂色:一个涂一面,一个涂两面,一个涂三面。
涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体,最少有多少个?(答案:307个)。