立体图形涂色问题
- 格式:ppt
- 大小:3.66 MB
- 文档页数:18
通常,在一个大的立方体表面进行染色,染色之后再进行切割,将大立方体切割成许多小的立方体,这样得到的小立方体中,染色的情况会有许多种,一面染色、两面染色、三面染色……本讲主要讲解解决这类问题的一些方法。
包括染色一面,两面,三面等小立方体个数的计算公式。
例1、将下图中棱长为10厘米正方体表面涂上红色,如果沿着虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?1. 1.长宽高分别为3,4,5的长方体,将其表面涂上红色,然后将其切成60个边长为1的小立方体,这些小立方体中没有被涂上红色的所有表面的面积和是多少?2. 2.长宽高分别为6,8,12的长方体,将其表面涂上红色,然后沿着与边长分别为6和8的侧面平行的面切3次,沿着与边长分别为8和12的侧面平行的面切2次,沿着与边长分别为6和12的侧面平行的面切3次,将其分成若干个小长方体,这些小长方体中没有被涂成红色的所有表面的面积是多少?3. 3.将棱长为8厘米正方体表面涂上红色,如果把它切成64个边长为2厘米的小立方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?例2、有30个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?1. 1.如下图,由44个边长为1厘米的小正方体组成的如图所示的形式,现在把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?2. 2.有55个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?3. 3.如下图,由35个边长为2厘米的小正方体堆成的形状,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?视频描述例3、一个长方体木块,长5分米,宽3分米,高4分米,在它六个面上都漆满油漆,然后锯成棱长都是1分米的正方体木块。
问锯成的木块中三面涂有油漆有多少块?两面涂有油漆的有多少块?1. 1.一个长方体木块,长10分米,宽6分米,高8分米,在它六个面上都漆满油漆,然后锯成棱长都是2分米的正方体木块。
第五讲立体图形染色问题
姓名成绩
【例1】一个正方体棱长7cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
【例2】一个长方体长9cm,宽4cm,高8 cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
〖练习1〗一个正方体,表面涂成红色,切成棱长1cm的小正方体,期中一面涂色的有216个小正方体,这个正方体的体积是多少?
〖练习2〗一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切n次后,要使各面上均没有红色的小方块为24块,则n的取值是________。
综合试题
1、某学生语文和数学平均分为90分,语文和英语的平均分为94分,英语和数学平均分为91分。
这位学生语文考()分,数学考()分。
2、甲仓库有大米95.8吨,乙仓库有大米54.5吨。
要从甲仓库中运()吨到乙仓库后,乙仓库中的大米吨数是甲仓库中的2倍。
3、有一组数据如下图排列:
一二三四五
1 2 3 4 5
9 8 7 6
10 11 12 13
17 16 15 14
······如此规律,1991排在第()列。
4、一个长方体,如果长减少2厘米,宽、高不变,它的体积减少48立方厘米,如果宽增加3厘米,长、高都不变,它的体积增加99立方厘米,如果高增加4厘米,长、宽都不变,它的体积增加352立方厘米,求原长方体的表面积是多少平方厘米?。
五年级:美妙数学之“正方体涂色问题”(0807五)
我们人教版五年级下册学过了探索图形,你还记得吗?
探索图形中的其中一类就是正方体涂色问题,把小正方体拼成大正方体,这样的大正方体的规格可以简单地表示成2×2×2,3×3×3……n×n×n,问,三面涂色,两面涂色,一面涂色的和没有涂色的小正方体各有几个?
大家回忆一下这样的问题我们一般怎样解决呢?
算三面涂色的小正方体的个数方法是这样的:三面涂色的小正方体都是大正方体的顶点所在的小正方体,大正方体一共有8个顶点也就是三面涂色的小正方体有8个;两面涂色的小正方体分布在大正方体的棱处,但要去掉头尾,所以两面涂色小正方体个数为(n-2)×12;一面涂色小正方体分布在大正方体的面上,但是要去掉面上一圈,也就是(n-2)×(n-2)×6;没有涂色的小正方体分布在内心,也就是要剥去大正方体华丽的外表,所以没有涂色的小正方体个数是(n-2)×(n-2)×(n-2)。
同学们想起来了吗?那我的问题来了,正方体是这样那长方体呢?敬请期待下一期的分享。
可编辑修改精选长方体正方体染色问题、沉浸问题、三视图全文完整版教学内容教学目标掌握长方体正方体染色问题、沉浸问题、三视图重点染色问题、沉浸问题、三视图难点染色问题、沉浸问题、三视图教学过程一、染色问题一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。
(1)三个面涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。
(2)两个面涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。
(3)一个面涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。
(4)六个面都没有涂色的在大正方体的中间,有两种算法:算法1: 1000-8-96-384=512(个);算法2: 8×8×8=512(个)。
公式:(1)正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)3个.一面被涂色的小立方体为(n-2)2*6个.两面被涂色的小立方体有(n-2)*12个.三面被涂色的有8个.(2)长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个【例 1】下图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:1; 1面:6;两面:2;三面:8【巩固】下图是456⨯⨯长方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?看如右下图,那么他最少用了_____块木块。
正方体涂色问题【课堂实录】一、复习导入1、正方体有什么特征?2、提问:把一个表面涂上红色的正方体每条棱平均分成2份,切开!能够切成多少个小正方体?你能用算式表示吗?(生:23=8)想象一下如果给这个正方体的表面涂上颜色,小正方体会有什么变化?(生:8个小正方体都是3面涂色的)师:为什么8个小正方体都是三面涂色?生:因为这8个小正方体都在顶点处。
二、探索新知(一)发现规律1、理解三阶正方体师出示三阶正方体:把这个表面涂上红色的正方体的每条棱平均分成3份,切开一共能够切成多少个小正方体?猜想小正方体涂色的面有什么不同?生:小正方体除了有三面涂色的,还可能有两面涂色、一面涂色和没有涂色的。
2、观察验证师:请你利用手中的正方体学具观察验证找出每种小正方体的涂色情况和数量,跟组内同学交流一下并填写学习单。
(学生观察分类:三面涂色的块数、两面涂色的块数、一面涂色的块数、没有涂色的块数)指名多个小组汇报,师根据生汇报数据板书。
3、规律初探师:要想准确地知道三面涂色、两面涂色、一面涂色和没有涂色的各有几个,还得知道它们所处的位置。
说给你的小组同学听一听。
小组汇报4、深化理解师:发现了涂色正方体分布的规律,下面我们使用这个规律挑战一下——把学具袋里涂色面不同的小正方体快速还原成一个大正方体,比一比看谁拼的最快。
(1)合作前小组讨论分工及复原策略。
(2)速拼比赛(3)指名速度较快的小组介绍方法,教师指出有效分工有序合作的重要性。
(二)验证规律师:(课件出示4阶正方体)这个小正方体的涂色情况又是怎样的呢?请你们在小组里研究,并填写学习单。
1、小组交流,并指名汇报。
生1:三面涂色的在正方体的顶点位置,所以有8个。
生2:两面涂色的有24个,每条棱上有2个,一共12条棱。
生3:一面涂色的有24个,因为每个面有4个,有6个面。
生4:没有涂色的有8个,在这个正方体的最里面。
2、师:这些数据是怎么得到的呢?生1:学生是用2×12算出来的,说一说“为什么用2×12”?从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会能够从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。