高考数学一轮复习第八章平面解析几何第五节椭圆学案文
- 格式:doc
- 大小:518.50 KB
- 文档页数:10
椭圆[考试要求] 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3.理解数形结合思想.4.了解椭圆的简单应用.1.椭圆的定义(1)平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.①当2a>|F1F2|时,M点的轨迹为椭圆;②当2a=|F1F2|时,M点的轨迹为线段F1F2;③当2a<|F1F2|时,M点的轨迹不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)离心率e=ca,且e∈(0,1)a ,b ,c 的关系c 2=a 2-b 2[常用结论]1.点P (x 0,y 0)和椭圆的位置关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.2.焦点三角形如图,椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.设r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:(1)当r 1=r 2,即点P 的位置为短轴端点时,θ最大;(2)S =b 2tan θ2=c |y 0|,当|y 0|=b ,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)a -c ≤|PF 1|≤a +c .(4)|PF 1|=a +ex 0,|PF 2|=a -ex 0.(5)当PF 2⊥x 轴时,点P 的坐标为⎝⎛⎫c ,±b 2a . (6)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ.3.椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边长,a 2=b 2+c 2.4.已知过焦点F 1的弦AB ,则△ABF 2的周长为4a . 5.椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =-b 2a 2,即k AB =-b 2x 0a 2y 0. 6.弦长公式:直线与圆锥曲线相交所得的弦长|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2] =1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线的斜率).一、易错易误辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( ) (3)椭圆的离心率e 越大,椭圆就越圆.( )(4)关于x ,y 的方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆. ( ) [答案] (1)× (2)√ (3)× (4)√ 二、教材习题衍生1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10 D [依椭圆的定义知:|PF 1|+|PF 2|=2×5=10.]2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 22=1D .x 24+y 23=1D [设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).因为椭圆的一个焦点为F (1,0),离心率e =12,所以⎩⎪⎨⎪⎧c =1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,故椭圆C 的标准方程为x 24+y 23=1.]3.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是 .(3,4)∪(4,5) [由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3.解得3<k <5且k ≠4.]4.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为 .⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 [设P (x P ,y P ),x P >0,由题意知|F 1F 2|=2.则S △PF 1F 2=12×|F 1F 2|×|y P |=1,解得|y P |=1.代入椭圆的方程,得x 2P 5+14=1,解得x P =152,因此点P 的坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.] 第1课时 椭圆及其性质考点一 椭圆的定义及其应用椭圆定义的应用类型及方法(1)探求轨迹:确认平面内与两定点有关的轨迹是不是椭圆.(2)应用定义转化:涉及焦半径的问题,常利用|PF 1|+|PF 2|=2a 实现等量转换. (3)焦点三角形问题:常把正、余弦定理同椭圆定义相结合,求焦点、三角形的面积等问题.[典例1] (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1(2)如图,椭圆x 2a 2+y 24=1(a >2)的左、右焦点分别为F 1,F 2,点P 是椭圆上的一点,若∠F 1PF 2=60°,那么△PF 1F 2的面积为( )A .233B .332C .334D .433(3)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任意一点,点M 的坐标为(6,4),则|PM |-|PF 1|的最小值为 .(1)D (2)D (3)-5 [(1)设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16>8=|C 1C 2|,所以M 的轨迹是以C 1,C 2为焦点的椭圆,且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1. (2)由题意知|PF 1|+|PF 2|=2a ,|F 1F 2|2=4a 2-16, 由余弦定理得4a 2-16=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 即4a 2-16=(|PF 1|+|PF 2|)2-3|PF 1||PF 2|, ∴|PF 1||PF 2|=163, ∴S △PF 1F 2=12|PF 1||PF 2|sin 60°=433,故选D .(3)由题意知,点M 在椭圆外部,且|PF 1|+|PF 2|=10,则|PM |-|PF 1|=|PM |-(10-|PF 2|)=|PM |+|PF 2|-10≥|F 2M |-10(当且仅当点P ,M ,F 2三点共线时等号成立).又F 2(3,0),则|F 2M |=(6-3)2+(4-0)2=5.∴|PM |-|PF 1|≥-5,即|PM |-|PF 1|的最小值为-5.]点评:解答本例T (3)的关键是差式(|PM |-|PF 1|)转化为和式(|PM |+|PF 2|-10).而转化的依据为|PF 1|+|PF 2|=2a .[跟进训练]1.已知A (-1,0),B 是圆F :x 2-2x +y 2-11=0(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为( )A .x 212+y 211=1B .x 236-y 235=1C .x 23-y 22=1D .x 23+y 22=1D [由题意得|P A |=|PB |,∴|P A |+|PF |=|PB |+|PF |=r =23>|AF |=2,∴点P 的轨迹是以A ,F 为焦点的椭圆,且a =3,c =1,∴b =2, ∴动点P 的轨迹方程为x 23+y 22=1,故选D .]2.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b = .3 [法一:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3.法二:∵PF 1⊥PF 2,∴∠F 1PF 2=90°, ∴S △PF 1F 2=b 2tan 45°=9,∴b 2=9,∴b =3.]考点二 求椭圆的标准方程待定系数法求椭圆标准方程的一般步骤[典例2] (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝⎛⎭⎫-32,52,(3,5),则椭圆方程为 .(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为 .(3)已知中心在坐标原点的椭圆过点A (-3,0),且离心率e =53,则椭圆的标准方程为 .(1)y 210+x 26=1 (2)y 220+x 24=1 (3)x 29+y 24=1或y 2814+x 29=1 [(1)设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ).由⎩⎨⎧⎝⎛⎭⎫-322 m +⎝⎛⎭⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆方程为y 210+x 26=1.(2)法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知, 2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同,∴其焦点在y 轴上, 且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).∵c 2=16,且c 2=a 2-b 2, 故a 2-b 2=16.①又点(3,-5)在所求椭圆上, ∴(-5)2a 2+(3)2b2=1,则5a 2+3b2=1.② 由①②得b 2=4,a 2=20,∴所求椭圆的标准方程为y 220+x 24=1.(3)若焦点在x 轴上,由题知a =3,因为椭圆的离心率e =53,所以c =5,b =2,所以椭圆方程是x 29+y 24=1.若焦点在y 轴上,则b =3,a 2-c 2=9,又离心率e =c a =53,解得a 2=814,所以椭圆方程是y 2814+x 29=1.综上,椭圆的方程为x 29+y 24=1或y 2814+x 29=1.]点评:利用待定系数法要先定形(焦点位置),再定量,即首先确定焦点所在位置,然后根据条件建立关于a ,b 的方程组.如果焦点位置不确定,那么可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ).[跟进训练]1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为12,则椭圆C 的标准方程为( )A .x 23+y 2=1B .x 23+y 22=1C .x 29+y 24=1D .x 29+y 25=1D [由椭圆的定义,知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =12,所以a =3.因为椭圆的离心率e =c a =23,所以c =2,所以b 2=a 2-c 2=5,所以椭圆C 的方程为x 29+y 25=1,故选D .]2.(2020·通州模拟)设椭圆的对称轴为坐标轴,短轴的一个端点与两焦点是同一个正三角形的顶点,焦点与椭圆上的点的最短距离为3,则这个椭圆的方程为 ,离心率为 .x 212+y 29=1或x 29+y 212=1 12 [焦点与椭圆的最短距离为a -c =3, a =2c ,∴c =3,a =23,b =3,∴椭圆方程为x 212+y 29=1或x 29+y 212=1.离心率e =c a =12.]考点三 椭圆的几何性质1.求椭圆离心率或其范围的方法解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式,常用方法如下:(1)直接求出a ,c ,利用离心率公式e =ca 求解.(2)由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解. (3)构造a ,c 的齐次式.离心率e 的求解中可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e .2.利用椭圆几何性质求值或范围的思路(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系. (2)将所求范围用a ,b ,c 表示,利用a ,b ,c 自身的范围、关系求解.椭圆中的基本量a ,b ,c[典例3-1] 嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3 476公里,对该椭圆有四个结论:①焦距长约为300公里 ②长轴长约为3988公里 ③两焦点坐标约为(±150,0) ④离心率约为75994则上述结论正确的是( )A .①②④B .①③④C .①④D .②③④ C [设该椭圆的半长轴长为a ,半焦距长为c . 依题意可得月球半径约为12×3 476=1 738,a -c =100+1 738=1 838, a +c =400+1 738=2 138,2a =1 838+2 138=3 976,a =1 988, c =2 138-1 988=150,椭圆的离心率约为e =c a =1501 988=75994,可得结论①④正确,②错误;因为没有给坐标系,焦点坐标不确定,所以③错误.故选C .]点评:探求椭圆的长轴、短轴、焦距等问题,只要抓住题设中的信息,直译解方程即可.离心率[典例3-2] (1)(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2-3C .3-12D .3-1(2)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,则椭圆的离心率的取值范围是 .(1)D (2)⎣⎡⎭⎫22,1 [(1)由题设知∠F 1PF 2=90°,∠PF 2F 1=60°,|F 1F 2|=2c ,所以|PF 2|=c ,|PF 1|=3c .由椭圆的定义得|PF 1|+|PF 2|=2a ,即3c +c =2a ,所以(3+1)c =2a ,故椭圆C 的离心率e =c a =23+1=3-1.故选D .(2)若存在点P ,则圆x 2+y 2=c 2与椭圆有公共点,则∠F 1BF 2≥90°(B 为短轴端点), 即b ≤c <a ,即b 2≤c 2, ∴a 2-c 2≤c 2,∴a 2≤2c 2, ∴22≤e <1.] 点评:与几何图形有关的离心率问题,常借助勾股定理、正(余)弦定理求解;对于(2)这种探索性问题常采用临界点法求解.与椭圆有关的最值(范围问题) [典例3-3] (1)(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8(1)A (2)C [(1)由题意知,当M 在短轴顶点时,∠AMB 最大.①如图1,当焦点在x 轴,即m <3时,a =3,b =m ,tan α=3m≥tan 60°=3,∴0<m ≤1.图1 图2②如图2,当焦点在y 轴,即m >3时,a =m ,b =3,tan α=m 3≥tan 60°=3,∴m ≥9. 综上,m 的取值范围(0,1]∪[9,+∞),故选A .(2)由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2, ∴OP →·FP →=14x 2+x +3=14(x +2)2+2. ∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.]点评:本例(1)的求解恰恰应用了焦点三角形中张角最大的情形,借助该临界点,然后数形结合求解;本例(2)的求解采用了先建模,再借助椭圆中变量x 的有界性解模的思路.[跟进训练]1.已知椭圆x 2m -2+y 210-m=1的长轴在x 轴上,焦距为4,则m 等于( ) A .8 B .7 C .6 D .5A [因为椭圆x 2m -2+y 210-m =1的长轴在x 轴上,所以⎩⎪⎨⎪⎧ m -2>0,10-m >0,m -2>10-m , 解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.]2.(2020·攀枝花模拟)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过椭圆上的点P 作y 轴的垂线,垂足为Q ,若四边形F 1F 2PQ 为菱形,则该椭圆的离心率为( )A .2-12B .3-12C .2-1D .3-1 B [由题意,F 1(-c,0),F 2(c,0),因为四边形F 1F 2PQ 为菱形,所以P (2c ,3c ),将点P 坐标代入x 2a 2+y 2b 2=1可得:4c 2a 2+3c 2b2=1,整理得4c 4-8a 2c 2+a 4=0, 所以4e 4-8e 2+1=0,因0<e <1,故e =3-12.]。
第5讲椭圆[考纲解读] 1.掌握两种求椭圆方程的方法:定义法、待定系数法,并能根据其标准方程及几何图形研究椭圆的几何性质(X围、对称性、顶点、离心率).(重点) 2.掌握直线与椭圆位置关系的判断,并能求解直线与椭圆相关的综合问题.(难点) [考向预测]从近三年高考情况来看,本讲为高考的必考内容.预测2021年将会考查:①椭圆标准方程的求解;②直线与椭圆位置关系的应用;③求解与椭圆性质相关的问题.试题以解答题的形式呈现,灵活多变、技巧性强,具有一定的区分度,试题中等偏难.1.椭圆的定义(1)定义:在平面内到两定点F1,F2的距离的□01和等于□02常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做□03焦距.(2)集合语言:P={M||MF1|+|MF2|=□042a,且2a□05>|F1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数.注:当2a>|F1F2|时,轨迹为椭圆;当2a=|F1F2|时,轨迹为线段F1F2;当2a<|F1F2|时,轨迹不存在.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性X围-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a直线与椭圆方程联立方程组,消掉y,得到Ax2+Bx+C=0的形式(这里的系数A一定不为0),设其判别式为Δ:(1)Δ>0⇔直线与椭圆□01相交;(2)Δ=0⇔直线与椭圆□02相切;(3)Δ<0⇔直线与椭圆□03相离.4.弦长公式(1)假设直线y=kx+b与椭圆相交于两点A(x1,y1),B(x2,y2),那么|AB|=□011+k2|x1-x2|=□021+1k2|y1-y2|.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长□032b2a,最长为□042a.5.必记结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),那么当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)过焦点F1的弦AB,那么△ABF2的周长为4a.1.概念辨析(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)方程mx2+ny2=1(m>0,n>0且m≠n)表示的曲线是椭圆.()(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案(1)×(2)√(3)√(4)√2.小题热身(1)椭圆x29+y24=1的离心率是()A.133 B.53C.23 D.59答案 B解析由得a=3,b=2,所以c=a2-b2=32-22=5,离心率e=ca=5 3.(2)椭圆C:x2a2+y2b2=1(a>b>0),假设长轴的长为6,且两焦点恰好将长轴三等分,那么此椭圆的标准方程为()A.x236+y232=1 B.x29+y28=1C.x29+y25=1 D.x216+y212=1答案 B解析由题意,得2c2a=13,2a=6,解得a=3,c=1,那么b=32-12=8,所以椭圆C的方程为x29+y28=1.应选B.(3)假设方程x2m-2+y26-m=1表示椭圆,那么m的取值X围是________.答案2<m<6且m≠4解析方程x2m-2+y26-m=1表示椭圆⇔⎩⎪⎨⎪⎧m-2>0,6-m>0,m-2≠6-m,解得2<m<6且m≠4.(4)动点P(x,y)的坐标满足x2+(y+7)2+x2+(y-7)2=16,那么动点P的轨迹方程为________.答案x264+y215=1解析由得点P到点A(0,-7)和B(0,7)的距离之和为16,且16>|AB|,所以点P的轨迹是以A(0,-7),B(0,7)为焦点,长轴长为16的椭圆.显然a=8,c=7,故b2=a2-c2=15,所以动点P的轨迹方程为x264+y215=1.题型一椭圆的定义及应用1.过椭圆x24+y2=1的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,那么△ABF2的周长为()A.8 B.4 2 C.4 D.2 2 答案 A解析因为椭圆为x24+y2=1,所以椭圆的半长轴a=2,由椭圆的定义可得AF1+AF2=2a=4,且BF1+BF2=2a=4,所以△ABF2的周长为AB+AF2+BF2=(AF1+AF2)+(BF1+BF2)=4a=8.2.在平面直角坐标系xOy中,P是椭圆y24+x23=1上的一个动点,点A(1,1),B(0,-1),那么|P A|+|PB|的最大值为() A.5 B.4 C.3 D.2 答案 A解析如图,∵椭圆y24+x23=1,∴焦点坐标为B(0,-1)和B′(0,1),连接PB′,AB′,根据椭圆的定义,得|PB|+|PB′|=2a=4,可得|PB|=4-|PB′|,因此|P A|+|PB|=|P A|+(4-|PB′|)=4+(|P A|-|PB′|).∵|P A|-|PB′|≤|AB′|,∴|P A|+|PB|≤4+|AB′|=4+1=5.当且仅当点P 在AB ′的延长线上时,等号成立. 综上所述,可得|P A |+|PB |的最大值为5.3.(2019·某某模拟)F 1,F 2是椭圆x 29+y 27=1的左、右焦点,A 为椭圆上一点,且∠AF 1F 2=45°,那么△AF 1F 2的面积为( )A .7 B.74 C.72 D.752答案 C解析 由题意,得a =3,b =7,c =2,|AF 1|+|AF 2|=6.∴|AF 2|=6-|AF 1|.在△AF 1F 2中,|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|·cos45°=|AF 1|2-4|AF 1|+8,∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8,解得|AF 1|=72,∴△AF 1F 2的面积S =12×72×22×22=72.利用定义解焦点三角形问题及求最值的方法解焦点三角形问题利用定义求焦点三角形的周长和面积.解决焦点三角形问题常利用椭圆的定义、正弦定理或余弦定理.其中|PF 1|+|PF 2|=2a 两边平方是常用技巧.见举例说明3求最值抓住|PF 1|与|PF 2|之和为定值,可联系到基本不等式求|PF 1|·|PF 2|的最值;利用定义|PF 1|+|PF 2|=2a 转化或变形,借助三角形性质求最值.见举例说明21.如下图,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,那么点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆答案 A解析 由题意得|PF |=|MP |,所以|PO |+|PF |=|PO |+|MP |=|MO |>|OF |,即点P 到两定点O ,F 的距离之和为常数(圆的半径),且此常数大于两定点的距离,所以点P 的轨迹是椭圆.2.(2019·某某皖江模拟)F 1,F 2是长轴长为4的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点,那么△PF 1F 2面积的最大值为________.答案 2解析 解法一:∵△PF 1F 2的面积为12|PF 1||PF 2|·sin ∠F 1PF 2≤12⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=12a 2.又2a =4,∴a 2=4,∴△PF 1F 2面积的最大值为2.解法二:由题意可知2a =4,解得a =2.当P 点到F 1F 2距离最大时,S △PF 1F 2最大,此时P 为短轴端点,S △PF 1F 2=12·2c ·b =bc .又a 2=b 2+c 2=4,∴bc ≤b 2+c 22=2, ∴当b =c =2时,△PF 1F 2面积最大,为2.题型二 椭圆的标准方程角度1 定义法求椭圆的标准方程1.A ⎝ ⎛⎭⎪⎫-12,0,B 是圆⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,那么动点P 的轨迹方程为________.答案 x 2+y 234=1解析 如图,由题意知|P A |=|PB |,|PF |+|BP |=2.所以|P A |+|PF |=2且|P A |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+y 234=1.角度2 待定系数法求椭圆的标准方程2.椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),那么椭圆方程为________.答案 y 210+x 26=1解析设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ).由得⎩⎨⎧94m +254n =1,3m +5n =1,解得m =16,n =110,所以椭圆方程为y 210+x 26=1.1.定义法求椭圆的标准方程根据椭圆的定义确定a 2,b 2的值,再结合焦点位置求出椭圆的方程.见举例说明1.其中常用的关系有:(1)b2=a2-c2;(2)椭圆上任意一点到椭圆两焦点的距离之和等于2a;(3)椭圆上一短轴顶点到一焦点的距离等于实半轴长a.2.待定系数法求椭圆的标准方程的四步骤提醒:当椭圆的焦点位置不明确时,可设为mx2+ny2=1(m>0,n>0,m≠n)可简记为“先定型,再定量〞.见举例说明2.1.与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.答案x225+y216=1解析设动圆的半径为r,圆心为P(x,y),那么有|PC1|=r+1,|PC2|=9-r. 所以|PC1|+|PC2|=10>|C1C2|,所以点P的轨迹是以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆,点P的轨迹方程为x225+y216=1.2.(2019·某某调研)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,3)是椭圆上一点,且|PF1|,|F2F2|,|PF2|成等差数列,那么椭圆方程为________.答案x28+y26=1解析 ∵椭圆的中心在原点,焦点F 1,F 2在x 轴上,∴可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),∵P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,∴⎩⎨⎧4a 2+3b 2=1,2a =4c ,又a 2=b 2+c 2,∴a =22,b =6,c =2,∴椭圆方程为x 28+y 26=1.题型三 椭圆的几何性质1.椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,那么椭圆的左顶点为( )A .(-3,0)B .(-4,0)C .(-10,0)D .(-5,0)答案 D解析 由得,椭圆的一个焦点坐标为(3,0),故c =3,又因为2b =8,b =4,所以a 2=b 2+c 2=16+9=25.故a =5.所以椭圆的左顶点为(-5,0).2.F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A ,B 上下两点,假设△ABF 2是锐角三角形,那么该椭圆的离心率e 的取值X 围是( )A .(0,2-1)B .(2-1,1)C .(0,3-1)D .(3-1,1)答案 B解析 ∵F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且垂直于x轴的直线与椭圆交于A ,B 上下两点,∴F 1(-c,0),F 2(c,0),A ⎝ ⎛⎭⎪⎫-c ,b 2a ,B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,∵△ABF 2是锐角三角形,∴∠AF 2F 1<45°,∴tan ∠AF 2F 1<1,∴b 2a2c <1,整理,得b 2<2ac ,∴a 2-c 2<2ac ,两边同时除以a 2,并整理,得e 2+2e -1>0,解得e >2-1或e <-2-1(舍去),∵0<e <1,∴椭圆的离心率e 的取值X 围是(2-1,1).3.(2019·某某质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,那么PF →·P A →的最大值为________.答案 4解析 由题意知a =2,因为e =c a =12,所以c =1,b 2=a 2-c 2=3.故椭圆方程为x 24+y 23=1.设P 点坐标为(x 0,y 0).所以-2≤x 0≤2,-3≤y 0≤ 3.因为F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0),所以PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.那么当x 0=-2时,PF →·P A →取得最大值4.1.利用椭圆几何性质的注意点及技巧 (1)注意椭圆几何性质中的不等关系在求与椭圆有关的一些X 围问题时,经常用到x ,y 的X 围,离心率的X 围等不等关系.见举例说明3.(2)利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.见举例说明1.2.求椭圆离心率的方法(1)直接求出a,c,利用离心率公式e=ca求解.(2)由a,b,c之间的关系求离心率,可以利用变形公式e=1-b2a2求解.也可以利用b2=a2-c2消去b,得到关于a,c的方程或不等式,进而转化为关于e 的不等式再求解.如举例说明2.(3)由椭圆的定义求离心率.e=ca=2c2a,而2a是椭圆上任意一点到两焦点的距离之和,2c是焦距,从而与焦点三角形联系起来.1.椭圆E的焦点在x轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,那么椭圆E的标准方程为()A.x22+y22=1 B.x22+y2=1C.x24+y22=1 D.y24+x22=1答案 C解析易知b=c=2,故a2=b2+c2=4,从而椭圆E的标准方程为x24+y22=1.2.(2020·某某模拟)椭圆C:x2a2+y2b2=1(a>b>0)和直线l:x4+y3=1,假设过C的左焦点和下顶点的直线与l平行,那么椭圆C的离心率为()A.45B.35C.34D.15答案 A解析 直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以bc =34,又b 2+c 2=a 2⇒⎝ ⎛⎭⎪⎫34c 2+c 2=a 2⇒2516c 2=a 2,所以e =c a =45. 3.假设点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,那么OP →·FP→的最大值为( )A .2B .3C .6D .8 答案 C解析 由椭圆x 24+y 23=1,得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),那么OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP→取得最大值6.题型四 直线与椭圆的综合问题角度1 直线与椭圆的位置关系1.直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点. 解将直线l的方程与椭圆C 的方程联立,得方程组⎩⎨⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理,得9x 2+8mx +2m 2-4=0. ③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解,这时直线l 与椭圆C 没有公共点.角度2 点差法解中点弦问题2.焦点是F (0,52),并截直线y =2x -1所得弦的中点的横坐标是27的椭圆的标准方程为________.答案 y 275+x 225=1解析 设所求的椭圆方程为y 2a 2+x 2b 2=1(a >b >0),直线被椭圆所截弦的端点为A (x 1,y 1),B (x 2,y 2).由题意,可得弦AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,且x 1+x 22=27,y 1+y 22=-37.将A ,B 两点坐标代入椭圆方程,得⎩⎪⎨⎪⎧y 21a 2+x 21b 2=1,y 22a 2+x 22b 2=1.两式相减并化简,得a 2b 2=-y 1-y 2x 1-x 2×y 1+y 2x 1+x 2=-2×-6747=3,所以a 2=3b 2,又c 2=a 2-b 2=50,所以a 2=75,b 2=25,故所求椭圆的标准方程为y 275+x225=1.角度3 弦长问题3.椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,某某数m 的取值X 围; (2)求被椭圆截得的最长弦所在的直线方程.解(1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知,5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1), 所以|AB |=(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2]= 2⎣⎢⎡⎦⎥⎤4m 225-45(m 2-1) =2510-8m 2.所以当m =0时,|AB |最大,即被椭圆截得的弦最长,此时直线方程为y =x . 角度4 综合计算问题4.(2019·某某高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,假设|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解(1)设椭圆的半焦距为c ,依题意,2b =4,c a =55, 又a 2=b 2+c 2,可得a =5,b =2,c =1. 所以椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M,0).设直线PB 的斜率为k (k ≠0),又B (0,2),那么直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎨⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0,可得x P =-20k 4+5k2,代入y =kx +2得y P =8-10k 24+5k2,进而直线OP 的斜率为y P x P =4-5k2-10k.在y=kx+2中,令y=0,得x M=-2 k.由题意得N(0,-1),所以直线MN的斜率为-k2.由OP⊥MN,得4-5k2-10k·⎝⎛⎭⎪⎫-k2=-1,化简得k2=245,从而k=±2305.所以直线PB的斜率为2305或-2305.1.直线与椭圆位置关系的判定方法(1)代数法联立直线与椭圆方程可得到一个关于x,y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.见举例说明1.(2)几何法画出直线与椭圆的图象,根据图象判断公共点个数.2.“点差法〞的四步骤处理有关中点弦及对应直线斜率关系的问题时,常用“点差法〞,步骤如下:3.中点弦的重要结论AB为椭圆x2a2+y2b2=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0).(1)斜率:k =-b 2x 0a 2y 0.见举例说明2.(2)弦AB 的斜率与弦中点M 和椭圆中心O 的连线的斜率之积为定值-b 2a 2. 4.直线与椭圆相交的弦长公式(1)假设直线y =kx +m 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),那么|AB |=1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|.见举例说明3.(2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a ,最长为2a .1.假设直线y =kx +1与椭圆x 25+y 2m =1总有公共点,那么m 的取值X 围是( ) A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 直线y =kx +1恒过定点(0,1),假设直线y =kx +1与椭圆x 25+y 2m =1总有公共点,那么点(0,1)在椭圆x 25+y 2m =1内部或在椭圆上,所以1m ≤1,由方程x 25+y 2m =1表示椭圆,那么m >0且m ≠5,综上知m 的取值X 围是m ≥1且m ≠5.2.直线y =x +m 被椭圆2x 2+y 2=2截得的线段的中点的横坐标为16,那么中点的纵坐标为________.答案 -13解析 解法一:由⎩⎪⎨⎪⎧y =x +m ,2x 2+y 2=2,消去y 并整理得3x 2+2mx +m 2-2=0,设线段的两端点分别为A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=-2m 3,∴-2m 3=13,解得m =-12.由截得的线段的中点在直线y =x -12上,得中点的纵坐标y =16-12=-13.解法二:设线段的两端点分别为A (x 1,y 1),B (x 2,y 2),那么2x 21+y 21=2,2x 22+y 22=2.两式相减得2(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0.把y 1-y 2x 1-x 2=1,x 1+x 2=13代入上式,得y 1+y 22=-13,那么中点的纵坐标为-13.3.(2019·某某六中模拟)直线l :y =kx +2与椭圆C :x 28+y 22=1交于A ,B 两点,直线l 1与直线l 2:x +2y -4=0交于点M .(1)证明:直线l 2与椭圆C 相切;(2)设线段AB 的中点为N ,且|AB |=|MN |,求直线l 1的方程.解(1)证明:由⎩⎨⎧x 28+y 22=1,x +2y -4=0,消去x 整理得y 2-2y +1=0, ∵Δ=4-4=0,∴l 2与C 相切.(2)由⎩⎪⎨⎪⎧y =kx +2,x +2y -4=0,得M 的坐标为(0,2).由⎩⎨⎧x 28+y 22=1,y =kx +2,消去y 整理得(1+4k 2)x 2+16kx +8=0, 因为直线l 1与椭圆交于A ,B 两点, 所以Δ=(16k )2-32(1+4k 2)=128k 2-32>0,解得k 2>14.设A (x 1,y 1),B (x 2,y 2),N (x 0,y 0), 那么x 1+x 2=-16k 1+4k 2,x 1x 2=81+4k 2, 所以x 0=x 1+x 22=-8k1+4k 2. ∵|AB |=|MN |, 即1+k 2|x 1-x 2|=1+k 2|x 0-0|,∴(x 1+x 2)2-4x 1x 2=|x 0|, 即8k1+4k2=4 24k 2-11+4k 2,解得k 2=12,满足k 2>14.∴k =±22,∴直线l 1的方程为y =±22x +2.组 基础关1.椭圆mx 2+3y 2-6m =0的一个焦点的坐标为(0,2),那么m 的值为( ) A .1 B .3 C .5 D .8答案 C解析 由mx 2+3y 2-6m =0,得x 26+y22m =1.因为椭圆的一个焦点的坐标为(0,2),所以2m =6+4,解得m =5.2.(2019·某某模拟)如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为( )A.25B.35C.235D.255答案 B解析 由题2b =16.4,2a =20.5,那么b a =45,那么离心率e =1-⎝ ⎛⎭⎪⎫452=35.3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,那么实数a 的取值X 围是( )A .(-6,-2)B .(3,+∞)C .(-6,-2)∪(3,+∞)D .(-6,-3)∪(2,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧ a 2>a +6,a +6>0,解得⎩⎪⎨⎪⎧a <-2或a >3,a >-6,所以-6<a <-2或a >3.4.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,那么△OAB 的面积为( )A.43B.53C.54D.103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),那么直线AB 的方程为y =2x-2.联立⎩⎨⎧x 25+y 24=1,y =2x -2,解得交点(0,-2),⎝ ⎛⎭⎪⎫53,43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53.应选B.5.如图,椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=4,那么椭圆C 的方程为( )A.x 225+y 25=1 B.x 230+y 210=1 C.x 236+y 216=1 D.x 245+y 225=1答案 C解析 设F ′为椭圆的右焦点,连接PF ′,在△POF 中,由余弦定理,得cos ∠POF =|OP |2+|OF |2-|PF |22|OP ||OF |=35,那么|PF ′|=|OP |2+|OF ′|2-2|OP ||OF ′|cos (π-∠POF )=8,由椭圆定义,知2a =4+8=12,所以a =6,又c =25,所以b 2=16.故椭圆C 的方程为x 236+y 216=1.6.椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),那么椭圆的离心率是( )A.12B.22C.32D.55答案 C解析 设直线x -y +5=0与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2=14,于是椭圆的离心率e =ca =1-b 2a 2=32.应选C.7.(2020·某某一诊)点M (-1,0)和N (1,0),假设某直线上存在点P ,使得|PM |+|PN |=4,那么称该直线为“椭型直线〞,现有以下直线:①x -2y +6=0;②x -y =0;③2x -y +1=0;④x +y -3=0. 其中是“椭型直线〞的是( ) A .①③ B .①② C .②③ D .③④答案 C解析 由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,其方程为x 24+y 23=1.对于①,把x -2y +6=0代入x 24+y 23=1,整理得2y 2-9y +12=0,由Δ=(-9)2-4×2×12=-15<0,知x -2y +6=0不是“椭型直线〞;对于②,把y =x 代入x 24+y 23=1,整理得x 2=127,所以x -y =0是“椭型直线〞;对于③,把2x -y +1=0代入x 24+y 23=1,整理得19x 2+16x -8=0,由Δ=162-4×19×(-8)>0,知2x-y+1=0是“椭型直线〞;对于④,把x+y-3=0代入x24+y23=1,整理得7x2-24x+24=0,由Δ=(-24)2-4×7×24<0,知x+y-3=0不是“椭型直线〞.故②③是“椭型直线〞.8.椭圆的中心在原点,焦点在x轴上,离心率为55,且过点P(-5,4),那么椭圆的标准方程为________.答案x245+y236=1解析由题意设椭圆的标准方程为x2a2+y2b2=1(a>b>0).由离心率e=55可得a2=5c2,所以b2=4c2,故椭圆的方程为x25c2+y24c2=1,将P(-5,4)代入可得c2=9,故椭圆的方程为x245+y236=1.9.椭圆x25+y24=1的右焦点为F,假设过点F且倾斜角为π4的直线l与椭圆相交于A,B两点,那么|AB|的值为________.答案165 9解析由题意知,F(1,0).∵直线l的倾斜角为π4,∴斜率k=1.∴直线l的方程为y=x-1.代入椭圆方程,得9x2-10x-15=0.设A(x1,y1),B(x2,y2),那么x1+x2=109,x1x2=-53.∴|AB|=2·(x1+x2)2-4x1x2=2×⎝⎛⎭⎪⎫1092+4×53=1659. 10.椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆上,且PF2垂直于x轴,假设直线PF1的斜率为33,那么该椭圆的离心率为________.答案3 3解析 因为点P 在椭圆上,且PF 2垂直于x 轴,所以点P 的坐标为⎝ ⎛⎭⎪⎫c ,b 2a .又因为直线PF 1的斜率为33,所以在Rt △PF 1F 2中, PF 2F 1F 2=33,即b 2a 2c =33.所以3b 2=2ac . 3(a 2-c 2)=2ac ,3(1-e 2)=2e , 整理得3e 2+2e -3=0, 又0<e <1,解得e =33.组 能力关1.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,那么△PQF 周长的最小值是( )A .14B .16C .18D .20答案 C解析 如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上、下顶点时,△PQF 1(或△PQF 2)的周长即△PQF 周长的最小值,为10+2×4=18.2.离心率为22的椭圆C :y 2a 2+x 2b 2=1(a >b >0)的下、上焦点分别为F 1,F 2,直线l :y =kx +1过椭圆C 的焦点F 2,与椭圆交于A ,B 两点,假设点A 到y 轴的距离是点B 到y 轴距离的2倍,那么k 2=________.答案 27解析 直线l 过定点(0,1),即F 2为(0,1),由于c a =22,a 2=b 2+c 2,故a =2,b =1,那么椭圆C 的方程为y 22+x 2=1,由⎩⎨⎧y 22+x 2=1,y =kx +1,得(k 2+2)x 2+2kx -1=0,设A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=-2kk 2+2,x 1x 2=-1k 2+2,由点A 到y 轴的距离是点B 到y 轴距离的2倍,得x 1=-2x 2,代入x 1+x 2=-2kk 2+2,解得x 2=2kk 2+2,x 1=-4k k 2+2,代入x 1x 2=-1k 2+2,解得k 2=27.3.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.假设△MF 1F 2为等腰三角形,那么M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,分析可知点M 在以F 1为圆心,焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎨⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎪⎨⎪⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15).4.(2020·某某摸底)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b a x 相交于P ,Q 两点,且A P →·A Q →=0,O P →=3O Q →,那么椭圆C 的标准方程为________,圆A 的标准方程为________.答案 x 24+y 2=1 (x -2)2+y 2=85 解析 如图,设T 为线段PQ 的中点,连接AT ,那么AT ⊥PQ . ∵A P →·A Q →=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又O P →=3O Q →,∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12.由得焦半距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4,∴|AT |2+4|AT |2=4, ∴|AT |=255,r =|AP |=2105. ∴圆A 的方程为(x -2)2+y 2=85.5.椭圆C :x 2a 2+y 2b 2=1(a >b >0),e =12,其中F 是椭圆的右焦点,焦距为2,直线l 与椭圆C 交于点A ,B ,线段AB 中点的横坐标为14,且AF→=λFB →(其中λ>1).(1)求椭圆C 的标准方程; (2)某某数λ的值.解(1)由椭圆的焦距为2,知c =1, 又e =12,∴a =2,故b 2=a 2-c 2=3, ∴椭圆C 的标准方程为x 24+y 23=1.(2)由AF→=λFB →,可知A ,B ,F 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).假设直线AB ⊥x 轴,那么x 1=x 2=1,不符合题意; 当AB 所在直线l 的斜率k 存在时, 设l 的方程为y =k (x -1).由⎩⎨⎧y =k (x -1),x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0.①①的判别式Δ=64k 4-4(4k 2+3)(4k 2-12)=144(k 2+1)>0. ∵⎩⎪⎨⎪⎧x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴x 1+x 2=8k 24k 2+3=2×14=12,∴k 2=14.将k 2=14代入方程①,得4x 2-2x -11=0,解得x =1±354. 又AF →=(1-x 1,-y 1),FB →=(x 2-1,y 2),AF →=λFB →, 即1-x 1=λ(x 2-1),λ=1-x 1x 2-1,又λ>1,∴λ=3+52.组 素养关1.(2019·某某二模)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点,且满足PF 2⊥x 轴,|PF 2|=32,离心率为12.(1)求椭圆的标准方程;(2)假设M 为y 轴正半轴上的定点,过M 的直线l 交椭圆于A ,B 两点,设O 为坐标原点,S AOB =-32tan ∠AOB ,求点M 的坐标.解(1)由题意,知c a =12,b 2a =32,结合a 2=b 2+c 2,得a =2,b =3,所以x 24+y 23=1.(2)设M (0,t ),t >0,由题意知,直线l 的斜率存在,设l 为y =kx +t ,A (x 1,y 1),B (x 2,y 2),由S △AOB =-32tan ∠AOB ,得12|OA ||OB |sin ∠AOB =-32·sin ∠AOBcos ∠AOB ,得|OA ||OB |cos ∠AOB =-3,即OA →·OB→=-3, 联立直线l 和椭圆C 的方程,有 ⎩⎨⎧y =kx +t ,x 24+y 23=1,整理得(3+4k 2)x 2+8ktx +4t 2-12=0, ∴x 1+x 2=-8kt3+4k 2,x 1x 2=4t 2-123+4k 2,由x 1x 2+(kx 1+t )(kx 2+t )=-3,得(k 2+1)x 1x 2+kt (x 1+x 2)+t 2=-3, ∴(k 2+1)4t 2-123+4k 2-kt ·8kt3+4k 2+t 2=-3, 整理可得7t 2=3,又t >0,得t =217. 故M 的坐标为⎝⎛⎭⎪⎫0,217 2.(2019·某某六市第二次联考)动点P 到定点F (1,0)和到直线x =2的距离之比为22,设动点P 的轨迹为曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A ,B 两点,直线l :y =mx +n 与曲线E 交于C ,D 两点,与AB 相交于一点(交点位于线段AB 上,且与点A ,B 不重合).(1)求曲线E 的方程;(2)求直线l 与圆x 2+y 2=1相切时,四边形ABCD 的面积是否有最大值?假设有,求出其最大值及对应的直线l 的方程;假设没有,请说明理由.解(1)设点P (x ,y ).由题意可得(x -1)2+y 2|x -2|=22,化简得x 22+y 2=1.所以曲线E 的方程为x 22+y 2=1. (2)设点C (x 1,y 1),D (x 2,y 2).将x =1代入x 22+y 2=1,得|y |=22,所以|AB |= 2. 当m =0时,显然不符合题意.当m ≠0时,因为直线l 与圆x 2+y 2=1相切,word- 31 - / 31 所以|n |m 2+1=1,所以n 2=m 2+1.由⎩⎨⎧ y =mx +n ,x 22+y 2=1消去y 并整理, 得⎝ ⎛⎭⎪⎫m 2+12x 2+2mnx +n 2-1=0. 因为Δ=4m 2n 2-4⎝ ⎛⎭⎪⎫m 2+12(n 2-1)=2m 2>0, 所以x 1+x 2=-4mn2m 2+1,x 1x 2=2(n 2-1)2m 2+1. 所以S 四边形ACBD =12|AB |·|x 1-x 2|=12×2·(x 1+x 2)2-4x 1x 2=2|m |2m 2+1=22|m |+1|m |≤22, 当且仅当2|m |=1|m |,即m =±22时等号成立.将m =±22代入n 2=m 2+1,得n =±62.经检验可知,直线y =22x -62和直线y =-22x +62符合题意.故四边形ACBD 的面积有最大值,最大值为22,对应的直线方程为y =22x-62和y =-22x +62.。
第五节椭圆1.掌握椭圆的定义、几何图形、标准方程及简单性质. 2.了解圆锥曲线的简单应用. 3.理解数形结合的思想.知识点一 椭圆的定义平面内与两个定点F 1,F 2的距离的和等于______________的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.答案常数(大于|F 1F 2|)1.判断正误(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( )(2)动点P 到两定点A (0,-2),B (0,2)的距离之和为4,则点P 的轨迹是椭圆.( ) 答案:(1)× (2)×2.已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离为________.解析:⎩⎪⎨⎪⎧|PF 1|=3,|PF 1|+|PF 2|=10⇒|PF 2|=7.答案:7知识点二 椭圆的标准方程和几何性质2a 2b 2c (0,1) a 2-b 23.(选修1-1P42第2(1)题改编)已知椭圆x 2m -2+y 210-m=1的焦点在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5解析:因为椭圆x 2m -2+y210-m=1的焦点在x 轴上.所以⎩⎪⎨⎪⎧10-m >0,m -2>0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.答案:A4.(选修1-1P42第5(3)题改编)已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________.解析:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).因为椭圆的一个焦点为F (1,0),离心率e=12,所以⎩⎪⎨⎪⎧c =1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2c =2,b 2=3,故椭圆的标准方程为x 24+y 23=1.答案:x 24+y 23=15.(2016·江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由题意可得B (-32a ,b 2),C (32a ,b2),F (c,0),则由∠BFC =90°得BF →·CF →=(c+32a ,-b 2)·(c -32a ,-b 2)=c 2-34a 2+14b 2=0,化简得3c =2a ,则离心率e =c a =23=63.答案:63热点一 椭圆的定义及标准方程【例1】 (1)过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2(2)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1 B .x 216+y 26=1 C.x 24+y 22=1 D .x 28+y 24=1【解析】 (1)因为椭圆方程为4x 2+y 2=1,所以a =1.根据椭圆的定义,知△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.(2)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12得a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.【答案】 (1)B (2)A(1)已知动圆M 过定点A (-3,0)并且与定圆B :(x -3)2+y 2=64相切,则动圆圆心M 的轨迹方程为( )A.x 216+y 27=1B.x 27+y 216=1C.x 216-y 27=1 D.x 27-y 216=1 (2)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:(1)因为点A 在圆B 内,所以过点A 的圆与圆B 只能内切,因为B (3,0),所以|AB |=6.所以|BM |=8-|MA |,即|MB |+|MA |=8>|AB |,所以动点M 的轨迹是以A ,B 为焦点的椭圆,设其方程为x 2a +y 2b =1,又a =4,c =3,b 2=7,所以方程为x 216+y 27=1.故选A.(2)由题意知|PF 1|+|PF 2|=2a ,PF 1→⊥PF 2→,所以|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,所以(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,所以2|PF 1||PF 2|=4a 2-4c 2=4b 2.所以|PF 1||PF 2|=2b 2,所以S △PF 1F 2=12|PF 1||PF 2|=12×2b 2=b 2=9.所以b =3.答案:(1)A (2)3 热点二 椭圆的几何性质考向1 求椭圆的离心率(或取值范围)【例2】 (2016·新课标全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34【解析】 设E (0,m ),则直线AE 的方程为-x a +y m =1,由题意可知M (-c ,m -mc a),(0,m 2)和B (a,0)三点共线,则m -mc a -m 2-c =m 2-a ,化简得a =3c ,则C 的离心率e =c a =13. 【答案】 A考向2 根据椭圆的性质求值或范围【例3】 (1)(2017·安庆模拟)P 为椭圆x 216+y 215=1上任意一点,EF 为圆N :(x -1)2+y 2=4的任意一条直径,则PE →·PF →的取值范围是( )A .[0,15]B .[5,15]C .[5,21]D .(5,21)(2)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上的点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )A.32B.332C.94D.154【解析】 (1)PE →·PF →=(PN →+NE →)·(PN →+NF →)=(PN →+NE →)·(PN →-NE →)=PN →2-NE →2=|PN →|2-4,因为a -c ≤|PN →|≤a +c ,即3≤|PN →|≤5,所以PE →·PF →的范围是[5,21].(2)由椭圆方程知c =4-3=1, 所以F 1(-1,0),F 2(1,0).因为椭圆C 上点A 满足AF 2⊥F 1F 2,则可设A (1,y 0),代入椭圆方程可得y 20=94,所以y 0=±32. 设P (x 1,y 1),则F 1P →=(x 1+1,y 1),F 2A →=(0,y 0), 所以F 1P →·F 2A →=y 1y 0.因为点P 是椭圆C 上的动点,所以-3≤y 1≤3,F 1P →·F 2A →的最大值为332.【答案】 (1)C (2)B(1)已知椭圆E :x 2a2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1 (2)(2017·安徽淮南一模)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在椭圆C上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎦⎥⎤38,34 D.⎣⎢⎡⎦⎥⎤34,1 解析:(1)不妨设左焦点为F 2,连接AF 2,BF 2,由椭圆的对称性可知四边形AFBF 2的对角线互相平分,所以四边形AFBF 2为平行四边形,所以|AF |+|BF |=|BF 2|+|BF |=2a =4,所以a =2,设M (0,b ),所以d =45b ≥45⇒b ≥1,所以e =1-b 2a2=1-b 24≤1-14=32,又e ∈(0,1),所以e ∈⎝ ⎛⎦⎥⎤0,32. (2)由题意,得A 1(-2,0),A 2(2,0),设P (x 0,y 0)(x 0≠±2),则有x 204+y 203=1,整理,得y 20x 20-4=-34.因为k PA 1 =y 0x 0+2,k PA 2 =y 0x 0-2,所以k PA 1 ·k PA 2 =y 20x 20-4=-34,又k PA 2 ∈[-2,-1],所以kPA 1 ∈⎣⎢⎡⎦⎥⎤38,34,故选C.答案:(1)A (2)C热点三 直线与椭圆的位置关系【例4】 (2016·四川卷)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (3,12)在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |·|MB |=|MC |·|MD |.【解】 (Ⅰ)由已知,a =2b .又椭圆x 2a 2+y 2b 2=1(a >b >0)过点P (3,12),故34b 2+14b2=1,解得b 2=1,所以椭圆E 的方程是x 24+y 2=1. (Ⅱ)证明:设直线l 的方程为y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2),由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =12x +m ,得x 2+2mx +2m 2-2=0,①方程①的判别式为Δ=4(2-m 2),由Δ>0,即2-m 2>0,解得-2<m < 2. 由①得x 1+x 2=-2m ,x 1x 2=2m 2-2,所以M 点的坐标为(-m ,m 2),直线OM 的方程为y =-12x ,由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =-12x ,得C (-2,22),D (2,-22)或C (2,-22),D (-2,22). 所以|MC |·|MD |=52(-m +2)·52(2+m )=54(2-m 2). 又|MA |·|MB |=14|AB |2=14[(x 1-x 2)2+(y 1-y 2)2]=516[(x 1+x 2)2-4x 1x 2]=516[4m 2-4(2m2-2)]=54(2-m 2),所以|MA |·|MB |=|MC |·|MD |.【总结反思】(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=+k2x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2](k 为直线斜率).设F 1,F 2分别是椭圆C :x2a2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求椭圆C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据a 2-b 2=c 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去).故椭圆C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.1.涉及椭圆定义的题目,要抓住“椭圆上任一点到两焦点距离之和等于2a ”这个特征.充分利用定义.“回到定义中去”是一个很重要的思想方法.2.求椭圆方程的方法(1)直接法:根据所给条件判断焦点位置,并确定a ,b 的值,按标准方程写出方程,其中难点为确定a ,b 的值.(2)待定系数法:先设出字母系数的方程,根据条件建立字母系数的方程并求解,然后代入所设方程而得方程,其中难点是建立字母系数的方程.3.离心率是椭圆的重要几何性质,是高考重点考查的一个知识点.这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围.无论是哪类问题,其难点都是建立关于a,b,c的关系式(等式或不等式),并且最后要把其中的b用a,c表达,转化为关于离心率e的关系式,这是化解有关椭圆的离心率问题难点的根本方法.4.直线与圆锥曲线的关系问题,一般可以直接联立方程,把方程组转化成关于x或y的一元二次方程,利用根与系数的关系及弦长公式求解.。