高等数学一复习教程
- 格式:doc
- 大小:786.50 KB
- 文档页数:16
《高等数学一》课程复习大纲与练习题第一章函数一、内容小结1.函数的概念(1)函数的定义(2)函数的表示法:公式法(解析法)、图像法和表格法2.函数的基本性质(1)有界性(2)单调性:函数的单调性一般与区间有关(3)奇偶性:偶函数的图像关于y轴对称,而奇函数的图像则是关于原点对称(4)周期性:周期函数的图像呈周期状,即在任意形如nnT+的区间上,函数的图像有相同的形状。
+x+x[T)1](,3.常用的函数类型(1)基本初等函数:常值函数:cy=;幂函数:μμ(y=为实常数);x指数函数:)1aay x;(≠,0>=a对数函数:)1,0(log ≠>=a a x y a ;三角函数:x y x y x y x y x y x y csc ,sec ,cot ,tan ,cos ,sin ======; 反三角函数:x arc y x y x y x y cot ,arctan ,arccos ,arcsin ==== (2)反函数 (3)复合函数(4)初等函数:由基本初等函数经过有限次的四则运算和复合运算,并能用一个解析式(公式)表示的函数(5)分段函数:如果)(x f 在其定义域的不同的子区间内,其对应法则有着不同的初等函数表达式,则称)(x f 为分段函数。
二、常见题型1.求函数的自然定义域。
2.判断函数是否相等。
3.已知(x)u ,)(f y ϕ==u ,求复合函数(x))f(ϕ。
4.已知复合函数(x))f(ϕ的表达式,求f(u)或(x)u ϕ=的表达式。
5.判断函数的有界性、单调性、奇偶性、周期性。
6.求函数的反函数。
7.从实际问题中列函数关系式。
第二章 极限与连续一、内容小结 1.有关定义 (1)数列 (2)数列的极限(3)级数 (4)级数的部分和 (5)级数的敛散 (6)函数的极限 (7)无穷小量 (8)无穷大量 (9)无穷小量的阶 (10)函数的连续性 (11)左连续 (12)右连续(13)函数在闭区间],[b a 上连续 (14)第一类间断点 (15)第二类间断点 2.数列极限的有关性质和结论(1)唯一性:若a a n n =∞→lim ,则极限值是唯一的。
第一章 函 数1. 1预备知识一元二次函数、方程和不等式不等式: 1大于取两边,大于大的,小于小的; 2 小于取中间。
绝对值不等式:|x|>a(a>0) x>a 或x<-a|x|<a 等价于 -a<x<a一元二次方程的两个根分别为x1,x2则有韦达定理:x 1+x 2= b a - x 1*x 2= c a 2b a-为曲线对称轴 不等式:算术平均值大于等于几何平均值:2a b+≥ a=b 时才相等. 因式分解与乘法公式22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2)n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 等差数列和等比数列()()()11111 22n n n n a a n d n a a n n n S S na d=+-+-==+1.等差数列 通项公式: 前项和公式或()()1100n n n GP a a qa q -=≠≠2.等比数列 通项公式,()()()11.1111n n n a q q S qna q ⎧-⎪≠=-⎨⎪=⎩前项和公式 求定义域:1:分式的分母不能为0 2:根号内的大于等于0 3:对数内的要大于0 (对数为分母时真数不等于1)y=sinx, 奇函数 y=cosx, 偶 定义域(-∞,+∞) 值域:-1 <= x <= 1y=tanx, 定义域{x | x ∈R, X ≠k π+2π} k 为整数 值域:(-∞,+∞)奇函数y=cotx 定义域{x | x ∈R, X ≠k π} k 为整数 值域:(-∞,+∞)奇函数判断奇偶性:f(-x)=f(x) 偶cosx,secx F(-x)=- f(x) 奇 sinx tanx cotx 等反函数:1先解出一个干净的Y , 2 再把Y 写成X ,X 写成Y 就成了,复合函数要会看,谁是外衣,谁是内衣,P36页的公式要记住,初等函数的几个常见的图形要记住,初等数学基础知识 一、三角函数1.公式同角三角函数间的基本关系式:·平方关系: sin 2(α)+cos 2 (α)=1; tan 2 (α)+1=sec 2 (α); cot 2 (α)+1=csc^2(α) ·商的关系:tanα=sinα/cosα cotα=cosα/sinα ·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式:sin(2x)=2sinx·cosxcos(2x)=cos 2(x)-sin 2 (α)=2cos 2(x)-1=1-2sin 2 (x) tan(2x)=2tanx / [1-tan^2(x)] ·半角公式:sin 2 (α/2)=(1-cosα)/2 cos 2 (α/2)=(1+cosα)/2tan 2 (α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式:sinα=2tan(α/2)/[1+tan 2 (α/2)] cosα=[1-tan 2 (α/2)]/[1+tan 2 (α/2)] tanα=2tan(α/2)/[1-tan 2 (α/2)] ·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2.特殊角的三角函数值只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
大一高数复习资料【全】.docx高等数学(本科少学时类型)第一章函数与极限第一节函数O函数基础(高中函数部分相关知识)(★★★)O邻域(去心邻域)(★)U (a, 6 )= {χ I X -a £ 6 }U (a, 6 )= {χIO c∣x —a <δ}第二节数列的极限O数列极限的证明(★)【题型示例】已知数列:X n证明Iim【证明示例】;- N语言1 ?由x n—a C g化简得n a g(g ),N-II g ;2 .即对? O , T N = g [「。
当n ?N 时,始终有不等式x n-a| <名成立,Iim :Xnf = aX )::第三节函数的极限O X > X O时函数极限的证明(★)【题型示例】已知函数f X ,证明IimfX=A^?X O【证明示例】;-'I语言1 .由f (x )—A £化简得OClX — X O lCg(名),- =g ;O无穷小与无穷大的相关定理与推论(★★)(定理三)假设f X为有界函数,g X为无穷小,则Iim ll fXgX =O(定理四)在自变量的某个变化过程中,若f X 为无穷大,则f-1X为无穷小;反之,若f X为无穷小,且fXPo ,贝U f j X为无穷大【题型示例】计算:Iim f X g X (或x—:)X ,-x o1.∣f(x)≤M ?函数f(X )在X = X。
的任一去心邻域U X0,:内是有界的;(f X ≤M ,?函数f X在x? D上有界;)2. Iim g X =0即函数g X是X r x0时的无穷小;J.X0 '(Iim g X =O即函数g X是x-? -■时的无穷小;)X—■3 .由定理可知Iim II fXgX =O(Iim f X g X =O)第五节极限运算法则O极限的四则运算法则(★★)(定理一)加减法则(定理二)乘除法则关于多项式P X、q X商式的极限运算p(x )= a0x m+a1x m^ +… + a m I q(X)= b0χn +b]X n^1+ … + b n2.即对NE >0 ,当Oc X-X O c6时,始终有不等式f (X ) — A <JE成立,Iim f (x )= AOx—?时函数极限的证明(★)【题型示例】已知函数f X ,证明Iim f X;= Ax—^C 【证明示例】;- X语言1. 由f (x)—A < E化简得X A g(E ),;2. 即对Pg >O , 2X=g2 ),当x>X时,始终有不等式f(x)—Ac名成立,Iim f X =AX 1::第四节无穷小与无穷大O无穷小与无穷大的本质(★)函数f X无穷小U Iim f X = O『F 则有Iim止)=淳b on :: mn = mn mIimX )X Of(Xo )g(χo)COg X O T-Z 0g X O i= 0,f X O = 0g X O ^ f X O ^ 0(特别地,当IimfX =-(不定型)时,通常分^X O g(x)0子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值X )3X -9设:【求解示例】解:因为X r 3 ,从而可得x=3 ,所以原X -3 r x -3.. 1 1式=Iim 2Iim IimX 3x2-9 x 3X 3 X - 3 J3X 3其中X =3为函数f X二享3的可去间断点X -9倘若运用罗比达法则求解(详见第三章第二节):解:Iim 些3=IimX_3X 3x -9L X 3χ2-9= lim — =1X 32x 6O连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数f X是定义域上的连续函数,那4(x)]=f II^^(χ)'么,lim fX >Xo第六节极限存在准则及两个重要极限O夹迫准则(P53) (★★★)Sin X d 1X第一个重要极限: Iim^_0Sin X ■■■: X :tanx /. Iimj0Sin X JI1XIim x- X-Q SinX (特别地,解:lir√2x+3V = lim(2x+1+2Ix 2x 1 x 2x 1X lIi2x-2x + 2 λ JlL厂/ 2 k2Π1D YIim H Iim H2x1—2x 1 2x r:h2一1 X M X H^(X+)J1? 22x 1辔?1L)2x 12x半Iim 11 ―2—2-0碑(2x+1丿Iim ∏=e2x1;2X 1丄e1=e.. 2= e2x?T第七节无穷小量的阶(无穷小的比较)O等价无穷小(★★)U ~ Sin U ~ tan U ~ arcsin U ~ arctan U ~ In(1 U)1. U~ e -11 22. U ~1-cosU2(乘除可替,加减不行)【题型示例】求值:limln 1 x2Xln1 xJ0X +3x【求解示例】解:因为X T 0,即xH0,所以原式=Iim ln(1+x厂xln(1+ x ) T χ2+3x(1+x) In(1+x) (1 + x 卜X x+1 1=Iim Iim IimX 0XX 3 x 0 XX 3 x 0 X 3 3第八节函数的连续性O函数连续的定义(★)IimfX= Iim f x = f X0X)XO- X=X ■O间断点的分类(P67) (★)"跳越间断点(不等)可去间断点(相等)IimXPIim1×-0 _______ .,1I sin X ] X X im o —Sin(x-x o) =I)X —X o= Iim —-X P Sin XIimX XO单调有界收敛准则(P57)(★★★)第二个重要极限:(一般地,Iim ll f X 9 = Iim f x 計',其中Iim f X 0) 【题型示例】求值: X i mIST .!:【求解示例】第一类间断点(左右极限存在)』第二类间断点〔无穷间断点(极限为Q(特别地,可去间断点能在分式中约去相应公因式)'2x . Oe , Xv应该怎样选^ +x X 兰0择数a ,使得f X成为在R上的连续函数?【求解示例】f 0_=e20=e1=e.I . .f 0 =a 0 =af 0 =a【题型示例】设函数f(x)=」1 .2 .由连续函数定义Iim f X = Iim f x = f 0 = ex—?0- ^?0【题型示例】求 y = f X 在X= a 处的切线与法线方程(或:过y =f X 图像上点II a ) f a ]」处的切线与法线方程)【求解示例】1. ^fX , y f a2.切线方程:y-f a = f a X -a法线方程:y_f a —f : X-a 第二节函数的和(差)、积与商的求导法则O 函数和(差)、积与商的求导法则(★★★)1 .线性组合(定理一):(〉U 二匸■ v ) = U ' : V 特别地,当1时,有(u ±v )? = u 士V2 .函数积的求导法则(定理二):(UV ) ? =UV UV第三节反函数和复合函数的求导法则[1 X ' (1)1 X ', y J ∣[iT 1 xy n丄(-1)n ' (n -1)! ?(1 X )Jl第五节隐函数及参数方程型函数的导数O 隐函数的求导(等式两边对 X 求导)(★★★)【题型示例】试求:方程y = X ? e y所给定的曲线 C :y = y X 在点1 - e,1的切线方程与法线方程【求解示例】由y = X ? e y 两边对X 求导F即 y = X 、e y 化简得y = 1 ■ eyy ■.? 1 1y 1 :1 -e 1-e1 .切线方程:y -1X -1 ? e 1 — e第九节闭区间上连续函数的性质O 零点定理(★)【题型示例】证明:方程f X :=g X C 至少有一个根介于a 与b 之间【证明示例】 1.(建立辅助函数)函数 X L f X ;J g X [-C 在闭区间la, b ]上连续; 2. 「a b :0 (端点异号) 3. 由零点定理,在开区间a,b 内至少有一点,使得厂=O ,即 f ? 一g ? -C -0 ( 0「J )这等式说明方程内至少有一个根' 第二章导数与微分第一节导数概念O 高等数学中导数的定义及几何意义( f X . d e +1 4. f X iU g X C 在开区间a,b P83) (★★)【题型示例】已知函数 ax +bX‘°在x=0X 0处可导,求a , b 【求解示例】■ . O 1 .?.? J f 丄0 )=e =1 j?0 )=a 2?由函数可导定义f 0 - =e 0「1 =e 0 1 =2I / 'f °?=bf 0 =e 0 1 =2j f _0 =f 亠[0 =a=1 f 0- = f 0= f 0 =b =2a = 1,b =2【题型示例】求函数【求解示例】由题可得上单调、可导,且f j X 的导数f X 为直接函数,其在定于域 D -L (X )[=丄 .L 「(X )f X=O ;?O 复合函数的求导法则(★★★)【题型示例】设y = ln e arcsin 【求解示例】1arcsi n j X^ 2 2解:y=—-XF=f e * -+√x +a /■ arcsIn x 21 2 2e -I X a(arcsine1C arcs in x 2 122e 一“x 」a1arcs in x 2 12 2e r x 亠 aarcs Ine2x;in ./X 2T L 2 . X —1J 2_x 2 2J f i 厂_____ J e 、一e arcsin x2χ ■ ,x 2 ?a 2 .第四节高阶导数Of (n ?(x ) = [f (n哉 X2x x 2 a 2A = dy )(★)dχ2 【题型示例】求函数 y = In 1 ? X 的n 阶导数【求解示例】y'丄=VX J ,(或 ddx3 .函数商的求导法则(定理三)O 反函数的求导法则(★)法线方程:y -仁…1 - e x -1 eO参数方程型函数的求导【题型示例】设参数方程Z=φft),求d-yIy = Y(t )dx2W 2窗【求解示例】ι.dy2.d~ydx W T t)dx C P Y t )第六节变化率问题举例及相关变化率(不作要求)第七节函数的微分O基本初等函数微分公式与微分运算法则(★★★)dy = f X dx第三章中值定理与导数的应用第一节中值定理O引理(费马引理)(★)O罗尔定理(★★★)【题型示例】现假设函数f X在0,二]上连续,在0,二上可导,试证明:二匚三[0,二,使得f co< C sin ? =0成立【证明示例】1. (建立辅助函数)令X = f XSinx显然函数X在闭区间0,二I上连续,在开区间0,二上可导;2. 又「0 计f 0 Sinθ =0-f r: Sin 二-0即「O= : =03. 由罗尔定理知一I 三iθ,二,使得f i:ico^ f ? -sin = 0成立O拉格朗日中值定理(★)【题型示例】证明不等式:当X 1时,e x e x【证明示例】1. (建立辅助函数)令函数f X =e x,则对—X ?1 ,显然函数f X在闭区间1,x ]上连续,在开区间1,x上可导,并且f X =e x;2. 由拉格朗日中值定理可得,'■ l1,xl使得等式X I■e-e = x -1 e成立,又e e1, e x-e1x-1e1=e x-e,化简得e x e X ,即证得:当X 1时,e x e x【题型示例】证明不等式:当X 0时,In Γ x X【证明示例】1.(建立辅助函数)令函数f X = In 1 ? X ,则对-X 0 ,函数f X在闭区间∣0, X1上连续,在开区1间0,二上可导,并且f X —;1 + X十;:=l0,χ 1使得等式In 1 X - In 1 O=Y^ X- 0 成立,1化简得In V X —X,又:;:= 0,xl, 1沁f—V丿1+匕即证得:当X . 1时,第二节罗比达法则O运用罗比达法则进行极限运算的基本步骤(★★)1. ☆等价无穷小的替换(以简化运算)2. 判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件0 OCIA .属于两大基本不定型(,—)且满足条件,0旳则进行运算:Iim f X = Iim —~~—I a g(X) J a g Y X)(再进行1、2步骤,反复直到结果得出)B . ☆不属于两大基本不定型⑴0 ;型(转乘为除,构造分式)【题型示例】求值:【求解示例】解:IimX c(InX= Iim 二2 ==Iimx_J 1 L--11im X’ - 0a X 10(一般地,Iim ^ In X f = 0 ,其中〉J - R)⑵型(通分构造分式,观察分母)【题型示例】求值:Iim i1 - 1I01Sinx X 丿【求解示例】“ f 1 1解: Iim —一一X Tl Sin XO^E^‰ x—s in Xι. 1-cosx01? 1 —cosx ι. SinX C Iim Iim Iim Iim 2 'X 0 2x L L x—0x )0' X P2 .由拉格朗日中值定理可得,::1 , ? In 1 X :: 1 X = X ,(转化为基本不定型)Iim X In XX >0rQIn In X= Iim丄.- x:X:X =2f∕-X -Lx:,. FX-S in X l fχ-si nx= Iim Iim 2—X X 0 XSin X XT XX2⑶00型(对数求极限法)2x。
高等数学1复习资料高等数学1是大学本科数学一门重要的基础课程。
本篇文章提供一些高等数学1的重要知识点和复习方法,帮助同学们更好地复习和备考。
一、函数与极限函数是高等数学1的重要概念,其余的内容都是建立在函数的基础之上。
在复习函数时,需要掌握函数的定义和一些基本性质(如奇偶性、单调性、周期性等)。
此外,要学习反函数、复合函数和初等函数的定义和性质。
为了理解函数的极限这个概念,需要了解极限的定义和一些基本性质((如唯一性、保号性等)。
在复习时,需要掌握常见函数的极限((如正弦函数、余弦函数、指数函数等),以及利用夹逼准则和L'Hospital法则计算极限的方法。
二、导数与微分导数是函数的重要性质,它刻画了函数在某一点的局部变化率。
在复习导数时,需要掌握导数的定义和计算方法,还需要掌握相关定理和性质(如导数的代数运算法则、中值定理、极值定理等)。
微分是导数的应用,它主要用于计算函数在一点的局部变化量。
在复习微分时,需要了解微分的定义和计算方法,以及相关定理和性质(如微分的线性性、微分的逆运算等)。
三、积分与应用积分是函数的另一种性质,它表示函数在一段区间上的总变化量。
在复习积分时,需要掌握积分的定义和计算方法,还需要掌握相关定理和性质((如积分的线性性、牛顿-莱布尼茨公式、换元积分法等)。
积分的应用非常广泛,如计算面积和体积、求解微分方程、求解曲线的弧长和曲率等。
在复习积分的应用时,需要了解基本概念和计算方法,以及掌握具体的问题求解技巧。
四、矩阵与行列式矩阵和行列式是高等数学1中的代数工具,主要用于向量、线性方程组和本征值问题的求解。
在复习矩阵和行列式时,需要掌握它们的定义和基本性质,以及常见的矩阵变换和行列式计算方法。
五、向量与空间解析几何向量和空间解析几何是高等数学1中的几何工具,主要用于计算平面和空间向量的坐标、距离和夹角,以及平面和空间中的图形方程。
在复习向量和空间解析几何时,需要掌握它们的定义和基本性质,以及常见问题的计算方法和解题技巧。
《高等数学(一)》考试大纲第一章函数及其图形(一)考核的知识点1.一元函数的定义及其图形2.函数的表示法(包括分段函数)3.函数的几个基本特性4.反函数及其图形5.复合函数6.初等函数7.简单函数关系的建立(二)自学要求函数是数学中最基本的概念之一,它从数学上反映各种实际现象中量与量之间的依赖关系,是微积分的主要研究对象。
本章总的要求是:理解一元函数的定义及函数与图形之间的关系;了解函数的几种常用表示方法;理解函数的几种基本特性;理解函数的反函数及它们的图形之间的关系;掌握函数的复合和分解;熟练掌握基本初等函数及其图形的性态;知道什么是初等函数;知道几种常用的经济函数;能根据比较简单的实际问题建立其中蕴含的函数关系。
本章重点:函数概念和基本初等函数难点:函数的复合(三)考核要求1.一元函数的定义及其图形,要求达到“领会”层次。
1.1 清楚一元函数的定义,理解确定函数的两个基本要素――定义域和对应法则(映射),知道什么是函数的值域。
1.2 清楚函数与其图形之间的关系1.3 对给定的解析式,会求出由它所确定的函数的自然定义域。
2.函数的表示法,要求达到“识记”层次。
2.1 知道函数的三种表示法――解析法,表格法,图像法,并知道它们各自的特点。
2.2 清楚分段函数的概念3.函数的几个基本特性,要求达到“简单应用”层次。
3.1 函数的有界性、单调性、奇偶性、周期性的含义,并会判定比较简单的函数是否具有这些特性。
4.反函数及其图形,要求达到“领会”层次。
4.1 知道函数的反函数的概念,清楚单调函数必有反函数4.2 会求比较简单的定义域、值域和图形与其反函数的定义域、值域和图形之间的关系5.复合函数,要求达到“简单应用”层次。
5.1 清楚函数的复合运算的含义,会求比较简单的复合函数的定义域。
5.2 会做多个函数按一定顺序的复合,并会把一个函数分解成简单函数的复合6.初等函数,要求达到“简单应用”层次。
6.1 知道什么是基本初等函数,熟悉其定义域、基本特性和图形(不含余切、正割、余割及其反函数的图形)。
高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★)○邻域(去心邻域)(★) 第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦。
当N n >时,始终有不等式n x a ε-<成立,∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦ (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;)2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小;(()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算 设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<(特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim 9x x x →-- 【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()2333331lim lim lim 9333x x x x x x x x x →→→--====-+-+其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()00233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim23--→x x x【求解示例】x →=== 第六节 极限存在准则及两个重要极限 ○夹迫准则(P53)(★★★)第一个重要极限:1sin lim0=→xxx ∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim 0=→xx x (特别地,000sin()lim1x x x x x x →-=-) ○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x 【求解示例】 第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +- 2.U U cos 1~212- (乘除可替,加减不行) 【题型示例】求值:()()x x x x x x 31ln 1ln lim 20++++→ 【求解示例】 第八节 函数的连续性○函数连续的定义(★) ○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数 【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1,>≤x x 在0=x 处可导,求a ,b 【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b == 【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=-法线方程:()()()1y f a x a f a -=--'第二节 函数的和(差)、积与商的求导法则 ○函数和(差)、积与商的求导法则(★★★)1.线性组合(定理一):()u v u v αβαβ'''±=+特别地,当1==βα时,有()u v u v '''±=±2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则 ○反函数的求导法则(★) 【题型示例】求函数()x f 1-的导数 【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】第四节 高阶导数○()()()()1n n fx f x -'⎡⎤=⎣⎦(或()()11n n nn d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数【求解示例】()1111y x x -'==++,()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ……第五节 隐函数及参数方程型函数的导数○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅∴ee y -=-='11111∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dx t ϕ'⎛⎫⎪⎝⎭='第六节 变化率问题举例及相关变化率(不作要求) 第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★)第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】 1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅【证明示例】 1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈,∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=,即证得:当1x >时,x e e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★)1.☆等价无穷小的替换(以简化运算) 2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆为基本不定型)⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】(一般地,()0lim ln 0x x x βα→⋅=,其中,αβ⑵∞-∞【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭ 【求解示例】()()()()000002sin 1cos 1cos limlimlim22L x x L x x x x xx x x ''→→→''---===''⑶00型(对数求极限法)【题型示例】求值:0lim x x x →【求解示例】()00ln 00002,ln ln ln ln 0lim ln lim 11lim lim 0lim lim 1x x x x L x y x x x x y x y x x x xx y x x x y e x∞∞'→→→→→→→====→====-===-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()1lim cos sin xx x x →+【求解示例】⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】本思路(★★) ⑴通分获得分式换)⑵取倒数获得分式形式)⑶取对数获得乘积式提前))}续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)【题型示例】求221dx a x+⎰ 【求解示例】222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求 【求解示例】○第二类换元法(去根式)(★★) (()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈)::令t =,于是2t b x a -=, 则原式可化为t ⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<), 于是arctan xt a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >):a令sin x a t =(22t ππ-<<),于是arcsinxt a=,则原式可化为cos a t ; b令sec x a t =(02t π<<),于是arccosat x =,则原式可化为tan a t ;【题型示例】求⎰(一次根式) 【求解示例】2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰【题型示例】求(三角换元) 【求解示例】第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指”○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰ ⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C 【题型示例】求2x e x dx ⋅⎰ 【求解示例】【题型示例】求sin x e xdx ⋅⎰ 【求解示例】∴()1sin sin cos 2x x e xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★) 设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<); 即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m=-则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:其中参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出 ⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】第五节 积分表的使用(不作要求) 第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★) ⑴()()bbaaf x dx f u du =⎰⎰⑵()0aaf x dx =⎰⑶()()b ba a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰ ⑷(线性性质)⑸(积分区间的可加性)⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b b aaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★) (定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则 ○变限积分的导数公式(★★★)(上上导―下下导) 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)【题型示例】求2121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==; b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰ 【求解示例】⑶(分部积分法) ○偶倍奇零(★★) 设()[],f x C a a ∈-,则有以下结论成立:⑴若()()f x f x -=,则()()02aa af x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0a af x dx -=⎰ 第四节 定积分在几何上的应用(暂时不作要求)第五节 定积分在物理上的应用(暂时不作要求)第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x=++⎰的证明。
成人高考高等数学一复习方法成人高考高等数学(一)复习方法数学的学习虽然我们不能死记硬背,但是我们还是可以掌握方法的。
下面是店铺为大家搜集整理出来的有关于成人高考高等数学(一)复习方法,希望可以帮助到大家!考生复习高等数学(一)时,可遵循以下复习方法:1.深刻理解考试大纲要求掌握的内容及相关的考核要求,将主要知识点进行横向与纵向的梳理,分析各知识点之间的内在联系,形成知识网络。
高等数学(一)的知识网络图如下:把握住这个知识网络,即可把握高等数学(一)的基本内容。
2.对复习内容要分清主次,突出重点,系统复习与重点复习相结合。
“极限”是高等数学中一个极为重要的基本概念,无论是导数,还是定积分、广义积分、曲线的渐近线,乃至无穷级数等概念无不建立在极限的基础上,根限是研究微积分的重要工具。
但极限的概念与理论只是高等数学的基础知识,并不是复习的重点,复习的重点是高等数学的核心内容——微分学与积分学,特别是一元函数的微积分,对微分与积分的基本概念、基本理论、基本运算和基本应用要多下功夫。
考生应深刻理解高等数学中的基本概念,特别是导数与微分的定义、原函数与不定积分的定义、定积分的定义等概念。
要熟练掌握基本方法和基本技能,特别是函数极限的计算,函数的导数与微分的计算,不定积分与定积分的计算,这是高等数学中一切运算与应用的基础。
复习中应当狠抓基本功,从熟记基本公式做起,如基本初等函数导数公式,不定积分基本公式。
要熟练掌握导数的四则运算法则及复合函数求导法则。
要熟练掌握计算不定积分与定积分的基本方法,特别是凑微分法及分部积分法。
考题中会有相当数量的关于导数与微分,不定积分与定积分的基本计算题,试题并不难,考生只要达到上述要求,都能正确解答这些试题。
同时,要高度重视导数与定积分的应用,如利用导数讨论函数的性质和曲线形状,利用导数的几何意义求曲线的切线方程与法线方程,利用函数的单调性证明不等式,利用定积分的换元积分法证明等式,利用定积分的几何应用求平面图形的面积和平面图形绕坐标轴旋转得到的旋转体的体积,以及二元函数的.无条件极值与条件极值等。
《高等数学一》复习教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x 362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 220=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
解:1|'),,0(|),(,sin cos 2/2/2/-==⎪⎩⎪⎨⎧====πθππθθθθθy e y x e y e x x e y -=-2/π5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。
求f(x)在(6,f(6))处的切线方程。
解:需求)1('),1()6('),6(f f f f 或,等式取x->0的极限有:f(1)=0)6(22)1('8)1('4])1()1(3)1()1([lim sin )sin 1(3)sin 1(lim0sin 0-=∴=∴==--+-+=--+>-=>-x y f f t f t f t f t f x x f x f t t x x C.导数应用问题6.已知xe xf x x xf x x f y --=+=1)]('[2)('')(2满足对一切,)0(0)('00≠=x x f 若,求),(00y x 点的性质。
解:令⎩⎨⎧<>>>===-0,00,0)(''00010000x x x e e x f x x x x 代入,,故为极小值点。
7.23)1(-=x x y ,求单调区间与极值、凹凸区间与拐点、渐进线。
解:定义域),1()1,(+∞-∞∈ x:斜:铅垂;;拐点及驻点2100''300'+===⇒===⇒=x y x x y x x y8.求函数xex y arctan 2/)1(+-=π的单调性与极值、渐进线。
解:101'arctan 2/22-==⇒++=+x x e xx x y x 与驻点π,2)2(-=-=x y x e y 与渐:πD.幂级数展开问题9.⎰=-x x dt t x dxd 022sin )sin( ⎰⎰⎰=⋅⋅⋅++-+⋅⋅⋅+-=-⋅⋅⋅++--+⋅⋅⋅+-=-+---+⋅⋅⋅+-+--=-⋅⋅⋅++--+⋅⋅⋅+---=----+-x n n n nxn n n n x n x x x dt t x dx d n n x x x t x n n t x t x t x dt t x n t x t x t x t x 02)12(2622147302141732)12(2622sin )!12()1(!31)sin()!12)(14()1(7!3131)sin()!12)(14()()1()(7!31)(31)sin()!12()()1()(!31)()sin(或:20202sin sin )(sin x du u dx d du u dx d u t x x x ==-⇒=-⎰⎰ 10.求)0(0)1ln()()(2n fn x x x x f 阶导数处的在=+=解:)(2)1(32()1ln(2213222---+--+⋅⋅⋅-+-=+n n n x o n x x x x x x x =)(2)1(321543n nn x o n x x x x +--+⋅⋅⋅-+-- 2!)1()0(1)(--=∴-n n f n n E.不等式的证明11.设)1,0(∈x ,211)1ln(112ln 1)1(ln )122<-+<-<++x x x x x ,求证(证:1)令0)0(,)1(ln )1()(22=-++=g x x x x g;得证。
单调下降,单调下降单调下降,时0)()(,0)(')(',0)('')('')1,0(0)0('')0(',0)1()1ln(2)('''),(''),('2<<<∈∴==<++-=x g x g x g x g x g x g x g g x x x g x g x g2)令单调下降,得证。
,0)('),1,0(,1)1ln(1)(<∈-+=x h x xx x h F.中值定理问题12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f , 0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使证:32)('''!31)0(''!21)0(')0()(x f x f x f f x f η+++= 其中]1,1[),,0(-∈∈x x η将x=1,x=-1代入有)('''61)0(''21)0()1(1)('''61)0(''21)0()1(021ηηf f f f f f f f ++==-+=-=两式相减:6)(''')('''21=+ηηf f3)](''')('''[21)('''][2121=+=∍∈∃ηηξηηξf f f ,,13.2e b a e <<<,求证:)(4ln ln 222a b e a b ->- 证:)(')()(:ξf ab a f b f Lagrange =--令ξξln 2ln ln ,ln )(222=--=a b a b x x f 令2222ln )()(0ln 1)(',ln )(ee t t t t t t >∴>∴<-==ξξϕξϕϕϕ )(4ln ln 222a b ea b ->- (关键:构造函数)三、补充习题(作业) 1.23)0('',11ln)(2-=+-=y x x x f 求2.曲线012)1,0(2cos 2sin =-+⎪⎩⎪⎨⎧==x y te y te x tt处切线为在 3.ex y x x e x y 1)0)(1ln(+=>+=的渐进线方程为 4.证明x>0时22)1(ln )1(-≥-x x x证:令3222)1(2)('''),(''),(',)1(ln )1()(xx x g x g x g x x x x g -=---= 02)1(''0)1(')1(>===g g g ,00'),,1(0'),1,0(0''2'',0'''),,1(2'',0'''),1,0(>∴⎩⎨⎧>∞∈<∈⇒>⇒⎭⎬⎫>>+∞∈><∈g g x g x g g g x g g x第三讲 不定积分与定积分一、理论要求 1.不定积分 掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 2.定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值二、题型与解法 A.积分计算1.⎰⎰+-=--=-C x x dx x x dx 22arcsin)2(4)4(22.⎰⎰⎰+=+=+C x e xdx e xdx e dx x e x x xxtan tan 2sec )1(tan 2222223.设xx x f )1ln()(ln +=,求⎰dx x f )( 解:⎰⎰+=dx e e dx x f xx )1ln()(⎰+++-=+-++=--C e e x dx ee e e xx xx xx)1ln()1()11()1ln( 4.⎰⎰∞∞>-∞+=+-+-=112122ln 214)11(lim |arctan 1arctan b b dx x x x x x dx x x π B.积分性质5.)(x f 连续,⎰=10)()(dt xt f x ϕ,且A xx f x =>-)(lim 0,求)(x ϕ并讨论)('x ϕ在0=x 的连续性。