2.1一元多项式的定义和运算
- 格式:ppt
- 大小:539.00 KB
- 文档页数:24
第二章 多项式2.1 一元多项式的定义和运算1.多项式的定义令 R 是一个数环,并且 R 含有数 1,因而 R 含有全体整数.在这一章里,凡是说到数环,都作这样的约定,不再每次重复先讨论R 上一元多项式定义 1 数环 R 上一个文字 x 的多项式或一元多项式指的是形式表达式n n x a x a x a a ,2210 +++ , (1)这里 n 是非负整数而n a a a a ,,,,210 都是 R 中的数.在多项式(1)中,0a 叫做零次项或常数项, x a 1 叫做一次项,一般, i i x a 叫做 i 次项, i a 叫做 i 次项的系数.一元多项式常用符号 f(x),g(x),⋯来表示.2. 相等多项式:定义 2 若是数环 R 上两个一元多项式 f(x)和 g(x)有完全相同的项,或者只差一些系数为零的项,那么 f(x)和 g(x)说是相等;f (x)=g(x)非负整数 n 叫做多项式n n x a x a x a a ,2210 +++ ,( 0≠n a )的次数.系数全为零的多项式没有次数,这个多项式叫做零多项式.按照定义2,零多项式总可以记为 0.以后谈到多项式 f(x)的次数时,总假定 f(x)≠0.多项式的次数有时就简单地记作()()x f 0∂.3. 多项式的运算:()nn x a x a a x f +++= 10 ()mm x b x b b x g +++= 10是数环 R 上两个多项式,并且设 m ≤n ,多项式 f(x)与 g(x)的和 f(x)+g(x)指的是多项式()()()()n n n m m m x b a x b a x b a b a +++++++++ 1100 这里当 m<n 时,取01===+n m b b多项式 f(x)与 g(x)的积 f(x)g(x)指的是多项式mn m n x c x c c +++++ 10这里m n k b a b a b a b a c k k k k k +=++++=--,,1,0,011110我们定义 f(x)和 g(x)的差f(x)-g(x)= f(x)+(-g(x))4. 多项式加法和乘法的运算规则① 加法交换律: f(x)+g(x)= g(x) + f(x);② 加法结合律: (f(x)+g(x))+h(x)= f(x)+(g(x)+h(x)) ;③ 乘法交换律: f(x)g(x)=g(x)f(x);④ 乘法结合律: (f(x)g(x))h(x)=f(x)(g(x)h(x));⑤ 乘法对加法的分配律: f(x)(g(x)+h(x))=f(x)g(x)+f(x)h(x)有时候把一个多项式按"降幂"书写是方便的,这时将多项式写成n n n n a x a x a x a ++++--1110 ⑵当00≠a 时,n x a 0叫做多项式⑵的首项5. 多项式的运算性质定理 2.1.1 设 f(x)和 g(x)是数环 R 上两个多项式,并且 f(x)≠0,g(x)≠0.那么a) 当 f(x)+g(x)≠0 时,()()()()()()()()x g x f x g x f 000,max ∂∂≤+∂b) ()()()()()()()x g x f x g x f o 00∂+∂=∂证: 设()()()()m x g n x f =∂=∂00,()0,10≠+++=n nn a x a x a a x f ,()0,10≠+++=m m m b x b x b b x g ,并且n m ≤.那么()()()()()n n n x b a x b a b a x g x f ++++++=+ 1100, ⑶()()()m n m n x b a b a b a b a x g x f +++++= 011000, ⑷由(3),f(x)+g(x)的次数显然不超过 n ,另一方面,由 a n ≠0,b m ≠0 得 a n b m ≠0.所以由(5)得 f(x)g(x)的次数是 n +m.推论 2.1.2 f(x)g(x)=0 必要且只要 f(x)和 g(x)中至少有一个是零多式.证 若是 f(x)和 g(x)中有一个是零多项式,那么由多项式乘法定义得f(x)g(x)=0(x)≠0 且 g(x)≠0,那么由上面定理的证明得 f(x)g(x)≠0.推论 2.1.3 若是 f(x)g(x)= f(x)h(x),且 f(x)≠0,那么 h(x)=g(x)证 由 f(x)g(x)= f(x)h(x)得 f(x)(g(x)-h(x))=0.f(x)≠0,所以由推论2.1.2 必有 g(x)-h(x)=0,即 g(x)=h(x).由于推论 2.1.3 成立,我们说,多项式的乘法适合消去法。
第一章 多项式§1 数域 §2 一元多项式一、数域1、定义:P 是由一些复数组成的集合,包含0和1,如果P 中的任意两个数的和、差、积、商(除数不为零)仍在P 中,则称P 为一个数域。
简单地说:P 是一个含0和1的非空集合,且对四种运算封闭。
2、例1:有理数的集合Q ,实数集合R ,复数集合C 均为数域。
例2:{}()2,2Q Q b a b a P =∈+=是一个数域。
证明:Pd c adcb d c bd ac d c d c d c b a d c b a d c d c P bc ad bd ac d c b a P d b c a d c b a P d b c a d c b a Qd c b a P d c b a P P ∈--+--=-+-+=++≠-≠+∈+++=++∈-+-=+-+∈+++=+++∈∈++∀∈+=∈+=2222)2)(2()2)(2(2202,02)5(2)()2()2)(2)(4(2)()()2()2)(3(2)()()2()2)(2(,,,,2,22011;2000)1(2222有若故P 是一个数域。
练习:证{}Q b a bi a i Q ∈+=,)(是一个数域。
二、一元多项式注:在数域P 上进行讨论,x 是一个符号。
1、定义:0111a x a x a x a n n n n ++++-- ,(-∈Z n )称为数域P 上的一元多项式。
其中P a a a n ∈,,,10 ,用 ),(),(x g x f 表示。
若0≠n a ,则称n a 为首项系数,n 为多项式的次数,用))((x f ∂表示。
0a 为常数项。
2、相等:)()(x g x f =当且仅当次数相同,对应系数相等。
3、运算:设0111)(a x a x a x a x f n n n n ++++=-- ,0111)(b x b x b x b x g m m m m ++++=-- ,m n ≥(1) 加法: )()()()()(00b a x b a x b a x g x f m m m n n n +++++++=+其中:011====+-m n n b b b())(),(max ))()((x g x f x g x f ≤+∂ (2) 乘法:snm s s j i j i m n m n m n m n m n xb a b a x b a b a x b a b a x b a x g x f ∑∑+==+-+--+⎪⎪⎭⎫ ⎝⎛=+++++++=0001001111)()()()()(若:0)(,0)(≠≠x g x f ,则))(())(())()((x g x f x g x f ∂+∂=∂ 4、运算规律:(1))()()()(x f x g x g x f +=+(加法交换律)(2)))()(()()())()((x h x g x f x h x g x f ++=++(加法结合律) (3))()()()(x f x g x g x f =(乘法交换律)(4)))()()(()())()((x h x g x f x h x g x f =(乘法结合律) (5))()()()())()()((x h x f x g x f x h x g x f +=+(分配律) (6)若,0)(),()()()(≠=x f x h x f x g x f 则)()(x h x g =(消去律) 5、多项式环。
第二章 多项式2.1 一元多项式的定义和运算1. 设f (x ),g (x )和h (x )是实数域上的多项式.证明:若f (x )2 = x g (x )2+x h (x )2,那么 f (x ) = g (x ) = h (x ) = 0.证明概要:比较等式两边的次数可证.2. 求一组满足上一题中等式的不全为零的复系数多项式f (x ),g (x )和h (x ). 解:取f (x ) = 2ix ,g (x ) = i (x +1),h (x ) = x-1即可. 或取f (x ) = 0,g (x ) = 1,h (x ) = i 即可. 3. 证明:(1)(1)(1)1(1)2!!(1)()(1)!nnx x x x x n x n x x n n ---+-+-+---=-证明提示:用数学归纳法证之.2.2 多项式的整除性1. 求f (x )被g (x )除所得的商式和余式:(i) 14)(24--=x x x f ,13)(2--=x x x g(ii) 13)(235-+-=x x x x f ,23)(3+-=x x x g解:(i) 35)(,2)(2--=--=x x r x x x q(ii) 56)(,2)(22++=+=x x x r x x q2. 证明:kx f x )(|必要且只要)(|x f x证明:充分性显然.现证必要性.反证法:若x 不整除)(x f ,则c x xf x f +=)()(1,且0≠c .两边取k次方得k k c x xg x f +=)()(,其中0≠kc .于是x 不整除)(x f k .矛盾.故必要性成立.3. 令)(),(),(,)(2121x g x g x f x f 都是数域F 上的多项式,其中0)(1≠x f 且)()(21x g x g |)()(21x f x f ,)(1x f |)(1x g .证明:)(2x g |)(2x f .证明:反复应用整除定义即得证.4. 实数m,满足什么条件时多项式12++mx x 能够整除多项式q px x ++4?解:以12++mx x 除q px x ++4得一次余式.令余式为零得整除应满足的条件:当且仅当m m p 23-=且12-=m q 时,12++mx x |q px x ++4.5. 设F 是一个数域,F a ∈.证明:a x -整除nn a x -.解:因为1221()()n n n n n n x a x a x ax a x a -----=-++⋅⋅⋅++6. 考虑有理数域上多项式 1)1)(2()1()(-+++++=n k n k x x x x fn k x x )1()2(++⋅⋅⋅+,这里n 和k 都是非负整数.证明:1+k x |1)1()()1(++++-n k x x f x .解:因为 1(1)()(1)k n x f x x ++-++1[2(1)]()(1)k n x x f x x ++=-+++nk x x )1()2(1+=+7. 证明:1-d x 整除1-nx 必要且只要d 整除n .证明:若d |n ,令md n =,则=-=-1)(1m d n x x )1(-dx ·)1)()((21++⋅⋅⋅++--dm d m d x x x .所以1-d x |1-n x .下面证必要性:反证法,若d 不整除n ,令r qd n +=,0≠r ,且0<r <d .于是111)1(-+-=-=-=-+rr r qdr qdrqd nx x x xx xxx)1()1(-+-=rqdr x xx .因1-qd x 可被1-d x 整除,故)1(-qdrx x 可被1-d x 整除.即1-r x 是1-n x 被1-d x 除所得的余式.因r <d ,0≠r .所以与1-n x 可被1-dx 整除相矛盾.2.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式:(i)32103)(,343)(23234-++=---+=x x x x g x x x x x f ;(ii) i x i x i x i x x f ----+-+-+=1)21()42()22()(234;x i x x g -+-+=1)21()(2.解: (i) 3),(+=x g f ; (ii)i x i x g f -+-+=1)21(),(2.2. 设)()()(1x f x d x f =,)()()(1x g x d x g =.证明:若)())(),((x d x g x f =,且)(x f 和)(x g 不全为零,则1))(),((=x g x f ,反之,若1))(),((=x g x f ,则)(x d 是)(x f 与)(x g 的一个最大公因式.解:由本节定理2.3.2及2.3.3得证(常当作定理).3. 令)(x f 与)(x g 是][x F 的多项式,而a ,b ,c ,d 是F 中的数,并且0≠-bc ad .证明:))(),(())()(),()((x g x f x dg x cf x bg x af =++.证明:设)()()(1x bg x af x f +=)()()(1x dg x cf x g +=,=)(x d))(),((x g x f .易知)(x d |)(x f ,)(x d |)(x g ,从而)(x d |)(1x f ,)(x d |)(1x g .即)(x d 是)(1x f ,)(1x g 的一个公因式.再设)(x ϕ是)(1x f ,)(1x g 的任一公因式.则由定义知)(x ϕ|)(1x f ,)(x ϕ|)(1x g ,由)(x f ,)(x g 之所设及0≠-bc ad ,可解得)()()(11x g bcad b x f bcad d x f ---=)()()(11x g bcad a x f bcad c x g ----=从而可知)(x ϕ|)(x f ,)(x ϕ|)(x g .既)(x ϕ是)(x f 、)(x g 的一个公因式,所以)(x ϕ|)(x d .由定义知))(),(()(11x g x f x d =.4. 证明:(i) h g f ),(是fh 和gh 的最大公因式;(ii) ( f 1 , g 1 )( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ) 此处f ,g ,h 都是F [x ]的多项式. 证明:(i) 设( f , g ) = d , 则d | f ,d | g .所以dh | fh ,dh | gh .又有u ,v 使uf + vg = d .于是ufh + vgh = dh .所以dh 是fh ,gh 的一个最大公因式.(ii)设( f 1 , g 1 ) = d 1,( f 2 , g 2 ) = d 1,则d 1d 2同时整除f 1f 2,f 1g 2,g 1f 2,g 1g 2.d 1d 2是它们的一个公因式,另设ϕ是f 1f 2,f 1g 2,f 2g 1,g 1g 2的任一公因式,那么就有ϕ| ( f 1f 2 , f 1g 2 ),( f 1f 2 , f 1g 2 ) = f 1( f 2 , g 2 ) = f 1d 1.ϕ| ( f 2g 1 , g 1g 2 ),( f 2g 1 , g 1g 2 ) = g 1 ( f 2 , g 2 ) = g 1d 2.所以ϕ| ( d 2g 1 , f 1d 2 ),而( d 2g 1 , f 1d 2 ) = d 2 ( f 1 , g 1 ) = d 1d 2.既ϕ| d 2d 1.故有( f 1 , g 1 ) ( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ).5. 设432()242f x x x x x =+---,432()2f x x x x x =+--2-都是有理数Q 域上的多项式.求u (x ),][)(x Q x v ∈使得))(),(()()()()(x g xd f x v x g x u x f =+. 解:u (x )=-x-1,v (x )=x +2.6. 设(f , g )=1.令n 是任意正整数,证明:( f , g n) = 1.由此进一步证明,对于任意正整数m ,n ,都有( f m , g n ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,则vg = 1- uf ,两边n 次方得v n g n = ( 1- uf )n = 1+ u 1f .所以v n g n = ( 1- uf )n = 1 + u 1f - u 1f + v n g n = 1.从而 -u 1f + v n g n = 1,( f , g n ) = 1.固定g n,同理可证( f m, g n) = 1.7. 设( f , g ) = 1.证明:( f , f + g ) = ( f + g , g ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,进而有( u – v ) f + v ( g + f ) = 1, 所以( f , g + f ) = 1.同理( g + f , g ) = 1利用互素性质得( f g , f + g ) = 18. 证明:对于任意正整数n 都有( f , g )n = ( f n , g n ).证明:设( f , g )=d ,则f = df 1 ,g = dg 1,且( f 1 , g 1 ) = 1由上面第6题知 ( f 1n , g 1n) = 1,从而存在u ,v 使uf 1n+ vg 1n= 1.所以uf 1nd n+ vg 1nd n= d n,既uf n+ vg n= d n.又d n|f n,d n |g n .所以( f , g )n = d n = ( f n , g n ).9. 证明:若是f ( x )与g ( x )互素,并且的次数都大于0.那么定理2.3.3里的可以如此选取,u ( x )次数低于g ( x )的次数,v ( x )次数低于f ( x )的次数,并且这样的u ( x )与v ( x )是唯一的.证明:因为, 所以有u 1 ( x ),v 1 ( x )使u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,因))((x f ∂︒> 0,))((x g ∂︒> 0.所以f ( x )不整除v 1 ( x )及g ( x ) 不整除 u 1 ( x ).现以f ( x )除v 1( x ),得商式为q 1 ( x ),余式为v ( x ),则有v 1 ( x ) = f ( x ) q 1 ( x ) + v ( x ),其中))((x v ∂︒< ))((x f ∂︒.同理有u 1 ( x ) = g ( x ) q 2 ( x ) + u ( x ).其中))((x u ∂︒< ))((x g ∂︒.代入u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,得( g ( x ) q 2 ( x ) + u ( x ) ) f ( x ) + ( f ( x ) q 1 ( x ) + v ( x ) ) g ( x ) = 1.整理得u ( x ) f ( x ) + v ( x ) g ( x ) + [ q 1 ( x ) + q 2 ( x ) ] f ( x ) g ( x ) = 1.因为))()((x f x u ∂︒< ))()((x g x f ∂︒,))()((x g x v ∂︒< ))()((x g x f ∂︒,所以必有q 1 ( x ) + q 2 ( x ) = 0.即u ( x ) f ( x ) + v ( x ) g ( x ) = 1,且满足))((x u ∂︒< ))((x g ∂︒,))((x v ∂︒< ))((x f ∂︒.下面证唯一性 设另有u 2 ( x ) , v 2 ( x ) 满足u 2 ( x ) f ( x ) + v 2(x ) g (x ) = 1,及))((2x u ∂︒<))((x g ∂︒,))((2x v ∂︒<))((x f ∂︒.则有 ( u ( x ) - u 2 ( x ) ) f ( x ) = ( v 2 ( x ) – v ( x )) g ( x ).故f ( x )| ( v 2 ( x ) - v ( x ) ) g ( x ).又( f ( x ) , g ( x ) ) = 1,从而.如果v 2 ( x ) -0)(≠x v ,其次数一定低于f ( x )的次数,故只有v 2 ( x ) - v ( x ) = 0.既v 2 ( x ) = v ( x ).同理u ( x ) = u 2 ( x ).10.决定k ,使2(6)42x k x k ++++与2(2)2x k x k +++的最大公因式是一次的.解:设=24)6(2++++k x k x , g (x )= k x k x 2)2(2+++,以g ( x ) 除 f ( x ) 得余式4x +2k + 2.由题意4x + 2k + 2 | g ( x ),由此推出k = 1或k = 3.11.证明:如果 ( f ( x ) , g ( x ) ) =1,那么对于任意正整数m ,( f ( x m ) , g ( x m ) ) =1 证明:因为 ( f ( x ) , g ( x ) ) =1,所以u ( x ),v ( x ),满足u ( x ) f ( x ) + v ( x ) g ( x ) = 1.从而u ( x m) f ( x m) + v ( x m) g ( x m) = 1,此即是 ( f ( x m) , g ( x m) ) =1.12.设f ( x ) , g ( x )是数域F 上的多项式.f ( x )与g ( x )的最小公陪式指的是F [x ]中满足以下条件的一个多项式m ( x ):(a) f (x ) | m (x ) 且 g (x ) | m (x );(b) h (x )∈F [x ] 且 f (x ) | h (x ),g (x ) | h (x ),那么m (x ) | h (x ).(i) 证明: F [x ]中任意两个多项式都有最小公倍式,并且除了可能的零次因式差别外,是唯一的.(ii)设f (x ), g (x )都是最高次项系数是1的多项式.令[ f (x ), g (x )]表示 f (x )与g (x )的最高次项系数是1的那个最小公倍式.证明: f (x ) g (x )= (f (x ) , g (x )) [ f (x ), g (x )].证明:(i) 若f (x ) , g (x )有一个为0,则它门的最小公倍式是0.现设f (x )0≠, g (x )0≠.以d (x )记(f (x ) , g (x )).则f (x ) = d (x ) f 1(x ),g (x ) = d (x )g 1(x ),且(f 1(x ) , g 1(x )) =1.现证)()()(x d x g x f 是f (x ),g (x )的一个最小公倍式.首先由)()()(x d x g x f = f 1(x ) g (x )= f (x )g 1(x ),知其是f (x )与g (x )的一个公倍式.另设M (x )是f (x )与g (x )的任一公倍式,则有M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )及M (x )=g (x )t (x )= d (x ) g 1 (x )t (x ),消去d (x ),得f 1(x ) s (x ) = g 1 (x )t (x ).又(f 1(x ) , g 1(x )) =1,由此可得g 1 (x )|s (x ),令s (x )= g 1 (x ) s 1(x ).代入M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )得M (x )= d (x ) f 1 (x )g 1 (x )s 1(x )=s 1(x ))()()(x d x g x f .即)()()(x d x g x f | M (x ),即)()()(x d x g x f 是f (x ) , g (x )的一个最小公倍式.从而存在性得证.现证唯一性:若m 1(x ),m 2(x )都是f 1(x ) , g 1(x )的最小公倍式,由定义得m 1(x )|m 2(x )及m 2(x )|m 1(x ).所以m 1(x ),m 2(x )只相差一个常数因子.(ii)由(i)的证明,知当f 1(x ) , g 1(x )的最高次项系数都是1时,有f (x ) g (x )= (f (x ) , g (x )) [f (x ) , g (x )].13.设g (x )|)()(1x f x f n ⋅⋅⋅,并且(f i (x ), g (x )) =1, i =1,1,,2-⋅⋅⋅n . 证明 g (x ) | f n (x ). 证明:令11()()()n h x f x f x -= ,由(f 1(x ), g (x ))=1. ( f 2(x ), g (x ))=1,所以(f 1(x ) f 2(x ),g (x ))=1,进而可证得(h (x ), g (x ))=1又g (x ) | h (x )f n (x ),所以g (x ) | f n (x ).14.设][)(,),(1x F x f x f n ∈⋅⋅⋅.证明:(i) ()(,),(1x f x f n ⋅⋅⋅)=(()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)), 1≤k ≤n -1.(ii))(,),(1x f x f n ⋅⋅⋅互素的充要条件是存在多项式][)(,),(1x F x u x u n ∈⋅⋅⋅使得1)()()()(11=+⋅⋅⋅+x u x f x u x f n n证明:(i) 设d (x ) = ( ()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)),有d (x ) |()(,),(1x f x f k ⋅⋅⋅), d (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步有d (x ) | f i (x ), i =1,n ,,2⋅⋅⋅.另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,h (x ) |()(,),(1x f x f k ⋅⋅⋅) 及h (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步h (x ) | ( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = d (x ).所以( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = ()(,),(1x f x f n ⋅⋅⋅).(ii)充分性:若有)(,),(1x u x u n ⋅⋅⋅使+⋅⋅⋅+)()(11x u x f1)()(=x u x f n n ,另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,则有h (x )|1.从而)(,),(1x f x f n ⋅⋅⋅互素.必要性:若(f 1(x ), f 2(x ))= d 2(x ),则由定理2.3.2有u 11(x ) ,u 12(x ) ,使u 11(x )f 1(x )+ u 12(x ) f 2(x )= d 2(x ),则由定理2.3.2可以假设对于s -1个多项式是成立的.即当d s-1(x ) = ()(,),(11x f x f s -⋅⋅⋅)时,有u 11(x ,),⋅⋅⋅u 1s-1(x ),使得∑-=111)()(s i i ix f x u=d s-1(x ).则对于s 个多项式来说,由()(,),(1x f x f s ⋅⋅⋅)= (()(,),(11x f x f s -⋅⋅⋅), f s (x ))= ( d s-1(x ) , f s (x )).知有p (x ), q (x )使p (x )d s-1(x ) + q (x ) f s (x ) = ( d s-1(x ) , f (x )),以d s-1(x )的上述表示式代入,则得∑-=111)()(s i i ix f x u+ q (x ) f s (x ) = ( d s-1(x ) , f (x )),.即有p (x )u 11(x ,),⋅⋅⋅p (x )u 1s-1(x ) , q (x ),使∑-=111)())()((s i i ix f x ux q +p (x ) f s (x ) = ()(,),(1x f x f s ⋅⋅⋅)()(,),(1x f x f s ⋅⋅⋅)=1时,令p (x )=1,s =n 其中u 1(x )= p (x ) u 11(x ,),⋅⋅⋅u 1s (x ) = p (x )u 1s (x ) 则本题必要性得证. 15.设][)(,),(1x F x f x f n ∈⋅⋅⋅.令I ={+⋅⋅⋅+)()(11x g x f f n (x ) g n (x )|][)(x F x g i ∈, 1≤i ≤n } .比照定理1.4.2,证明:)(,),(1x f x f n ⋅⋅⋅有最大公因式.[提示:如果)(,),(1x f x f n ⋅⋅⋅不全为零,取d (x )是中次数最底的一个多项式,则d (x )就是)(,),(1x f x f n ⋅⋅⋅的一个最大公因式.] 证明:如果0)()(1==⋅⋅⋅=x f x f n ,则0就是它们的最大公因式.如不全为0,则I 中 有非零多项式.设d (x )是I 中次数最低的一个多项式.以d (x )除f (x ),得.其中r 1=0,或∂︒( r 1 (x ))< ∂︒( d (x )).由于r 1 (x )= f 1(x )- q 1 (x )d (x ),可以推得r 1 (x )∈I ,而d (x )是I 中次数最底的,故r 1 (x ) =0.所以d (x )|f 1(x ),同理d (x )|f 2(x )⋅⋅⋅,,d (x )|f n (x ).即d (x ) 是)(,),(1x f x f n ⋅⋅⋅的一个公因式,又因是它们的组合,故d (x ) 就是)(,),(1x f x f n ⋅⋅⋅的最大公因式.2.4 多项式的分解1. 在有理数域上分解以下多项式为不可约因式的乘积:(i) 3x 2+1; (ii) x 3-2x 2-2x +1.解: (i) 不可约. (ii) (x +1) (x 2-3x +1)2. 分别在复数域,实数域和有理数域上分解多项式x 4+1为不可约因式的乘积.解:在复数域上有x 4+1= (x +22(1+i )) (x +22(1+i )) (x -22(1-i )) (x -22(1-i ));在实数域上有x 4+1=( x 2+2x +1) (x 2-2x +1);在有理数域上x 4+1 不可约3. 证明:g (x )2|f (x )2,当且仅当g (x )|f (x ).证明:充分性显然.现证必要性,即若g (x )2|f (x )2,那么g (x )|f (x ).若f (x )= g (x ) =0,则有g (x )|f (x ).如果f (x ), g (x )不全为0,令d (x )=(f (x ), g (x )).则f (x )=d (x )f 1(x ), g (x )=d (x )g 1(x ),且(f 1(x ), g 1(x ))=1.那么f (x )2=d (x )2f 1(x )2, g (x )2=d (x )2g (x )2,故由g (x )2|f (x )2,可得g 1(x )2|f 1(x )2,故g 1(x )|f 1(x )2,又(f 1(x ) , g 1(x ) ) =1,根据互素多项式的性质知g 1(x )|f 1(x ),从而g 1(x ) = c f 1(x ), (c 为非零常数).于是g (x )|f (x ).4. (i)求f (x )= x 5-x 4-2x 3+2x 2+x -1在Q (x )内的典型分解式;(ii)求f (x )= 2x 5-10x 4+16x 3-16x 2+14x -6在R (x )内的典型分解式. 解: (i) f (x )= (x-1)3(x +1)2 ; (ii) f (x )= 2(x-1)2(x-3)(x 2+1)5. 证明:数域F 上一个次数大于零的多项式f (x )是F [x ]中某一不可约多项式的幂的充分必要条件是对于任意g (x )∈F [x ],或者(f (x ), g (x )) =1,或者存在一个正整数m 使得f (x )|g (x )m . 证明:必要性:设f (x ) = p m (x ) ( p (x )不可约) ,则对于F [x ]中的任意g (x ),只有两种可能:(p (x ),g(x ))=1或 p (x )|g(x ).在前一情形有( f (x ),g (x ) )=1,在后一情形有p m (x ) |g m (x ),即f (x ) |g (x )m .充分性:设f (x )=1()i sri i a p x =∏为其典型分解式.令g (x )=p 1(x ).若 s >1,则(p (x ), g (x ))≠1,且f (x )不整除g (x )m,即条件成立时,必有s =1,即f (x )= 11()rap x .6. 设p (x )是F [x ]中一个次数大于零的多项式.如果对于任意f (x ), g (x )∈F [x ],只要p (x )|f (x )g(x )就有p (x )| f (x )或p (x )| g(x ),那么p (x )不可约.证明:反证法,若)(x p 可约,设)()()(21x p x p x p =,其中)(),(21x p x p 的次数都低于)(x p 的次数.由)()(|)(21x p x p x p ,根据条件可得出)(|)(1x p x p 或)(|)(2x p x p ,这是不可能的.2.5 重因式1. 证明下列关于多项式的导数的公式: a) )(')('))'()((x g x f x g x f +=+; b))(')()()('))'()((x g x f x g x f x g x f +=提示:设10()n n f x a x a x a =+++ ,10()mm g x b x b x b =+++ 利用本教材中对导数的定义证之.2. 设)(x p 是)(x f 的导数)('x f 的1-k 重因式.证明: a) )(x p 未必是)(x f 的k 重因式;b))(x p 是)(x f 的k 重因式的充分必要条件是)(|)(x f x p证明:a) 设4)(3+=x x f ,则x 是x x f 3)('=的二重因式,但不是)(x f 的因式,更不是)(x f 的三重因式.b) 必要性显然;充分性,设)(x p 是)(x f 的s 重因式,则)(x p 是)('x f 的1-s 重因式.11-=-k s 即得出.3. 证明有理系数多项式!!21)(2n xxx x f n++++= 没有重因式.证明:因为)!1(!21)('12-++++=-n xxx x f n ,有1),'(=f f .4. a,b 应该满足什么条件,下列的有理系数多项式才能有重因式?a) b ax x ++33b) b ax x ++44提示:由多项式有重因式的充要条件是它与它的导数不互素可得.a) 0423=+b a ; b)02734=-b a .5. 证明:数域F 上的一个n 次多项式)(x f 能被它的导数整除的充分必要条件是:nb x a x f )()(-=,这里a,b 是F 中的数.证明:若nb x a x f )()(-=,则1)()('--=n b x an x f ,0>n ,所以)(1)(')(a x nx f x f -⋅=,)(|)('x f x f .必要性:设)(x f 的典型分解式为)()()(11x p x ap x f tm t m =,其中)(x p i 都是不可约多项式,则)()()()('1111x x p x p x f tm t m ϕ--= .由)(|)('x f x f ,知c x =)(ϕ(常数),但))((1))('(x f x f ∂︒=+∂︒.故知t =1,且n x p =∂︒))((1.即nb x a x f )()(-=.2.6 多项式函数 多项式的根1.设f (x )=2x 5-3x 4-5x 3+1.求f (3),f (-2). 解: f (3) =109; f (-2) =-71.2.数环R 的一个数c 说是f (x )∈R(x )的一个k 重根,如果f (x )可以被(x -c )k整除,但不能被(x -c )k +1整除.判断5是不是多项式f (x )=3x 5-224x 3+742x 2+5x +50的根.如果是的话,是几重根?提示:用3次综合除法得:5是f (x ) 的二重根. 3.设2x 3-x 2+3x -5=a (x -2)3+b (x -2)2+c (x -2)+d .求a,b,c,d . 提示:应用综合除法得:a =2, b =11, c =23, d =13. 4.将下列多项式f (x )表成x-a 的多项式. a) f (x )= x 5,a =1; b) f (x )=x 4-2x 2+3,a =-2. 解:用综合除法求出:a) f (x )= x 5=(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1)+1; b) f (x )=x 4-2x 2+3=(x +2)4-8(x +2)3+22(x +2)2+24(x +2)+11. 5.求一次数小于4的多项式,使f (2)=3,f (3)=-1,f (4)=0,f (5)=2.解:f (x )= -32x 3+217x 2-6203x +426.求一个2次多项式,使它在x =0,,2ππ处于函数 sin x 有相同的值.结果:24()()f x x x ππ=--7.令f (x ) , g (x ),是两个多项式,并且f (x 3) +x g (x 3)可以被x 2+x +1.证明: f (1) = g (1) =0.证明: 因x 2+x +1| f (x 3) +x g (x 3).故x 2+x +1=0的根必为f (x 3) +x g (x 3)的根.而x 2+x +1=0的两个根是2,231ωωi+-=.但3ω=1.故有2(1)(1)0(1)(1)0f g f g ωω+=⎧⎨+=⎩,解此方程组得:f (1) = g (1) =0.8.令c 是一个复数,且是Q [x ]中一个非零多项式的根.令J ={ f (x )∈Q [x ] | f (c ) = 0}.证明:a)在J 中存在唯一的高次项系数是1的多项式p (x ),使得J 中每一多项式f (x )都可以写成p (x )q (x )的形式,这里q (x )∈Q [x ].b) p (x )在Q [x ]中不可约.如果c =32+,求上述的p (x ).证明: a) 因c 是Q [x ]中一个非零多项式的根,则J 中存在次数大于零的多项式,即令A ={ m |f (x )∈J ,∂︒( f (x ))=m }非空. A 中必有最小数设为n (n >0).其对应的多项式若为f (x ),令p (x )=1a f (x ), (a 0是f (x )的最高次项系数),则11()n n n p x x a xa -=+++ .现证当f (x ) ∈J 时,必有f (x ) =p (x )q (x ).对于任意的f (x )∈J ,由p (x )的取法知∂︒( f (x )) ≥∂︒(p (x )).以p (x )除f (x )得f (x )=p (x )q (x )+r (x ),其中r (x )=0或∂︒( r (x )) <∂︒(p (x )).由于r (c )=f (c )-p (c )q (c )=0,故知r (x )∈J . 由p (x )的取法知r (x )的次数不可能小于p (x )的次数.故只有r (x )=0,即f (x ) = p (x )q (x ).再证的唯一性.设另有p 1(x )具有上述性质,则p (x )| p 1(x )且p 1(x ) | p (x ).所以p 1(x ) = c p (x ).又首项系数都为1,故c =1,即p 1(x ) = p (x ).b) 反证法:设p (x )可约,令p (x )=p 1(x ) p 2(x ),知p 1(x )与p 2(x )的次数都小于p (x )的次数.又p (c )=p 1(c )p 2(c )=0,知p 1(c )=0或p 2(c )=0从而p 1(c )或p 2(c ) ∈J ,这与p (x )是J 中次数最低的多项式相矛盾.故p (x )不可约.若c =32+,则p (x )=(x -32+)(x +32+)(x -32-) (x +32-).9.设C [x ]中多项式f (x )≠0且f (x )| f (x n),n 是一个对于1的整数.证明: f (x )的根只能是零或单位根.证明: 因f (x )| f (x n),所以f (x n)= f (x )g (x ), g (x )∈C [x ].如果c 是f (x )的根,即f (c )=0则f (nc)=f (c )g (c )=0, f (2nc)= f (nc) g (nc)=0,, f (knc)= f (1-k nc) g (1-k nc)=0.由于, f (x )在C 中至多有n 个不同的根,故有i <j ,使jnc =inc ,所以c =0或1.即c =0或c 是单位根.2.7 复数和实数域上多项式1.设n 次多项式n n na x a x a x f +++=-10)( 的根是n αα,,1 .a) 求以n c c αα,,1 为根的多项式,这里c 是一个数;b) 以na 1,,11 α(假定0,,1≠n αα )为根的多项式.解:a) 若c =0,则n c c αα,,1 都为0,则g (x )= x n即是.若c ≠0,则令g (x )=)(1)(10n n na x a x a cc x f +++=- 为所求.b) 令g (x )= f (x 1)x n =nn n n x a x a x a +++--110 ,则g (x )是以na 1,,11α为根的多项式.2.设f (x )是一个多项式,用)(x f 表示把f (x )的系数分别换成它们的共轭数后所得多项式.证明:a) 若是g (x )|f (x ),那么)(x g |)(x f ;b) 若是d (x )是f (x )和)(x f 的一个最大公因式,并且d (x )的最高次项系数是1,那么d (x )是一个实系数多项式.证明: a) 因为g (x )|f (x ),所以f (x )= q (x )g (x ), )(x f =)(x q )(x g 从而)(x g |)(x f .b) 若d (x )=(f (x ),)(x f ),则有u (x ), v (x )使的u (x )f (x )+ v (x ))(x f =d (x ),所以)(x d =)(x u )(x f +)(x vf f (x ),另一方面,由d (x )|f (x ), d (x )|)(x f ,可得)(x d |f (x ),)(x d |)(x f ,所以)(x d =(f (x ), )(x f ).从而d (x )=)(x d ,即d (x )是实系数多项式.3.给出实系数四次多项式在实数域上所有不同类型的典型分解式. 解:共9种:a (x +b )4; a (x +b 1)(x +b 2)3; a (x +b 1)2(x +b 2)2;a (x +b 1)(x +b 2)(x +b 3)2; a (x +b 1)(x +b 2)(x +b 3)(x +b 4); a (x 2+px +q )2; a (x 2+p 1x +q 1)(x 2+p 2x +q 2) ; a (x +b )2(x 2+px +q );a (x +b 1)(x +b 2)(x 2+px +q ) . (其中二次式x 2+px +q 不可约).4.在复数和实数域上分解x n-2为不可约因式的乘积.解: 在复数域上: x n -2=(x -n2)(x -)2()21--n nnx εε ,其中22cossini nn ππε=+; 在实数域上:当n 为奇数, x n-2=(x -n2)(x 2-222(1)cos(2n x nnππ-+-+ ;当n 为偶数, x n - 2=(x -n 2)(x +n 2)(x 222(2)cos(cosn x nnππ-+- )4n+.5.证明:数域F 上任意一个不可约多项式在复数域内没有重根.证明:设p (x )是F 上不可约多项式,因多项式的最大公因式不因数域扩大而改变, 所以在复数域内仍有(p (x ),'p (x ))=1,故p (x )在复数域内没有重根.2.8 有理数域上多项式1.证明以下多项式在有理域上不可约: a) x 4-2x 3+8x -10; b) 2x 5+18x 4+6x 2+6 c) x 4-2x 3+2x -3d) x 6+x 3+1提示:用艾森斯坦判断法. a)取p =2; b)取p =3; c)令x =y +1, 则f (x )=g (y )=y 4+2y 3-2, 取 p =2得g (y )不可约,即f (x )不可约;d)令x =y +1,则f (x )=g (y )=(y +1)6+(y +1)3+1=y 6+6y 5+15y 4+21y 3+18y 2 +9y+3,取p =3,得g (y )不可约,即f (x )不可约. 2利用艾森斯坦判断法,证明:若是t p p p ,,,21 是t 个不相同的素数,而n 是一个大于1的整数,那么ntp p p 21是一个无理数.证明:考虑多项式x n-t p p p ,,,21 ,因t p p p ,,,21 互不相同,取p=p 1满足艾森斯坦判断法,知x n -t p p p ,,,21 在有理数域上不可约, 因n<1无有理根,.因而.3.设f (x )是一个整数系数多项式,证明:若是f (0)和f (1)都是奇数,那么f (x )不能有整数根. 证明:设α是f (x )的一个整数根.则f (x )=(x -a )f 1(x ).由综合除法知f 1(x )也是整系数多项式.所以f (0)= -a f 1(0), f (1)=(1-a ) f 1(1),这是不可能的.因为α与1-α中有一个是偶数.从而f (0)与f (1)至少有一个是偶数,与题设矛盾.故f (x )无整数根.4.求以下多项式的有理数根: a) x 3-6x 2+15x -14; b) 4x 4-7x 2-5x -1;c) x 5-x 4-25x 3+2x 2-21x -3.解: a)有理单根-2; b)二重有理根-21; c)有理单根-1,2.2.9 多元多项式1.写出一个数域F 上三元三次多项式的一般形式.解:f =000a +∑=++1k j i kj i ijkzy x a+∑=++2k j i kj i ijkzy x a+∑=++3k j i kj i ijkzy x a其中,a ijk ∈F.2.设 f (n x x ,,1 )是一个r 次齐次多项式.t 是任意数.证明:f (n tx tx ,,1 )=t r f (n x x ,,1 ).证明:可设),,(1n x x f ∑=++=ri i i i i i i i n nnxx x a12121.于是 ),,(1n tx tx f ∑=++=ri i i i i i i i n nntx tx tx a12121)()()(∑=+++++=r i i i i i i i i i i i n nnnxx x ta1212121∑=++=ri i i i i ri i i n nnxx x t a12121∑=++=ri i i i i i i i rn nnxx x at12121rt=),,(1n x x f3. 设f (n x x ,,1 )是数域F 上一个n 元齐次多项式,证明:如果f (n x x ,,1 )=g (n x x ,,1 )h (n x x ,,1 ),则g ,h 也是n 元齐次多项式.证明:反证法,设g ,h 至少有一个不是n 元齐次多项式,不妨设是h ,则s g g g g +++= 21,1≥s ,i g 是齐次多项式,t h h h h +++= 21,1>t ,jh 是齐次多项式,并且假设)()()(21s g g g ∂︒>>∂︒>∂︒ ,)()()(21t h h h ∂︒>>∂︒>∂︒ .则111112()()s t s tf ghg gh h g h g h g h ==++++=+++其中t s h g h g ,11都不能消去,与f 是齐次多项式矛盾.故,g h 都是齐次多项式. 4.把多项式x 3+y 3+z 3+3xyz 写成两个多项式的乘积. 原式=(x +y +z )3-3(x +y +z )(xy +yz +xz )= (x +y +z ) [(x +y +z )2-3 (xy + yz +xz )] = (x +y +z ) (x 2+y 2+z 2-xy -yz -zx ).5.设F 是数域. f ,g ∈F [n x x ,,1 ]是F 上n 元多项式. 如果存在h ∈F [n x x ,,1 ]使得f =gh ,那么就说g 是f 的一个因式.或者说g |f .a) 证明,每一f 都可以被零次多项式c 和cf 整除c ∈F , c ≠0.b) f ∈F [n x x ,,1 ]说是不可约的,如果除了a)中那种类型的因式外f 没有其它因式,证明在F [x ,y ]里多项式x ,y ,x +y ,x 2-y 都不可约.c) 举反例证明,当n ≥2时,类似于一元多项式的带余除法不成立.d) f ,g ∈F [n x x ,,1 ]说是互素的,如果除了零次多项式外,它们没有次数大于零的公因式.证明x ,y ∈F [x ,y ]是互素的多项式.能是否找到u (x ,y ), v (x ,y ) ∈F [x ,y ],使得x u (x ,y )+y v (x ,y )=1?证明: a)因为0c ≠,所以1111,,(,,),(,,)[n n c cf x x f x x F cc∈ 1,,]nx x ,而11111(,,)[(,,)][(,,)]n n n f x x c f x x cf x x cc==所以|c f ,11(,,)|(,,)n n cf x x f x x .b) 现证对于1[,,]n F x x ,任意一次多项式不可约.设f 是1[,,]n F x x 的一次多项式.若f gh =,由次数定理有1= ()()()fgh ∂︒=∂︒+∂︒.因而g 与h 中有一个是0次多项式,故f 不可约.所以,,x y x y +都不可约.因2x y -是一个非齐次的二次多项式,如可约,只能是2x y -=()()x ay x b ++.比较()()x a y x b ++与2x y -的系数有:0,0b a ==,且1ab =-,这是不可能的,故2x y -不可约.c)例:若(,),(,)f x y x g x y y ==,若存在(,),(,)x y r x y ϕ使(,)(,)x x y y r x y ϕ=+,应有(,)0r x y =或c (常数).这是不可能的.即对于二元多项式.带余除法定理不成立. d)因为x 的因式只有常数c 与cx ,而x 不是y 的因式,故x 与y 的公共因式只有常数c (且0c ≠),故x 与y 互素.因对任意(,),(,)u x y v x y ,(,)(,)xu x y yv x y +没有零次项,所以找不到(,),(,)u x y v x y 使(,)(,)xu x y yv x y +=1.2.10 对称多项式1. 写出某一数环R 上三元三次对称多项式的一般形式. 结果: a 300(x 3+y 3+z 3)+a 210(x 2y +x 2z +y 2x +y 2z +z 2x +z 2y )+a 200(x 2+ y 2+z 2)+a 110(xy +xz +yx )+a 100 (x+y+z )+a 111(xyz )+a 000其中,a ijk ∈F.2.令R [n x x ,,1 ]是数环R 上n 元多项式环, S 是由一切n 元对称多项式组成的R [n x x ,,1 ]的子集.证明存在R [n x x ,,1 ]到S 的一个双射.证明:设1,,n σσ 是1,,n x x 的初等对称多项式.对任意11(,,)[,,]n n f x x R x x ∈ 规定1:(,,)|n f x x τ→ 1(,,)n f σσ ,则1(,,)n f σσ 是S 中唯一确定的多项式.既τ是R [n x x ,,1 ]到S 的映射, 对任意的1(,,)n g x x S ∈ ,由对称多项式的基本定理,有唯一的1(,,)n h σσ 使11(,,)(,,)n n h g x x σσ= .这里1(,,)n h x x [F ∈ 1,,]n x x ,故111((,,))(,,)(,,)n n n h x x h g x x τσσ== .故τ是满射.如果11(,,)(,,)n n f x x g x x ≠ 那么11(,,)(,,)n n f g σσσσ≠ ,所以τ是单射.从而是R [n x x ,,1 ]到S 的一个双射3.把下列多元多项式表成初等对称多项式的多项式: a)∑231x x; b)∑41x; c)32221x x x∑;解: a) 2212213424σσσσσσ--+;b) 42211221344244σσσσσσσ-++-; c) 2314535σσσσσ-+;4.证明:如果一个三次多项式x 3+ax 2+bx +c 的一个根的平方等于其余两个根的平方和那么这个多项式的系数满足以下关系: 2324)22(2)2(c ab a b a a +-=-.证明:设,,αβγ是32x ax bx c -++的三个根.则由条件知(,,f αβγ=222()αβγ--222()βγα--222()γαβ--=0,把(,,)f αβγ用初等对称多项式表出,得(,,)f αβγ=64223211212131233688168σσσσσσσσσσσ-++-+=4211(σσ-32211232)2(22)σσσσσ-++-.因123,,a b c σσσ=-=-=,用它们代入上式得(,,)f αβγ=42(a a -322)2(22)b a ab c -+++=0所以42(a a 322)2(22)b a ab c -=++.5.设n αα,,1 是某一数域F 上多项式x n +a 1x n -1++ a n -1x +a n 在复数域内的全部根.证明:2,,n αα 的每一个对称多项式都可以表成F 上关于1α的多项式.证明:设f (2,,n αα )是关于2,,n αα 的任意一个对称多项式.由对称多项式的基本定理有211(,,)(',,')n n f a a g σσ-= ,其中'i σ(1,2,,1i n =- )是nαα,,2的初等对称多项式.由于111'a σσ=-,11''i i i a σσσ-=-(2,,1i n =- ) 其中i σ是n αα,,1 的初等对称多项式.又(1)ii i a σ=-(1,2,,1i n =- ),是数域F 中的数,将它们代入上式可知, 'i σ是1a 与中的数11,,n αα- 的一个多项式,不妨记为i p (11,,n αα- )='i σ(1,2,,1i n =- ),再将它们代入f g=式右端,即证明f (nαα,,2)可表为1a 与11,,n αα- 的多项式.由11,,n αα- 是F 中的数,即f (nαα,,2)是F 上关于1a 的多项式:1()G a .。
数据结构一元多项式的运算正文:1. 引言本文档旨在介绍数据结构中一元多项式的运算方法。
一元多项式是指在一个变量上的多项式,其中每一项由一个系数和一个指数组成。
我们将会讨论一元多项式的表示、存储和基本运算,包括多项式的加法、减法、乘法和求导等操作。
2. 一元多项式的表示和存储2.1 一元多项式的定义一元多项式是指在一个变量x上的多项式,每一项由一个系数和一个指数组成,例如:2x^3 - 5x^2 + 3x + 1.其中,2、-5、3和1分别是系数,3、2、1和0分别是指数。
2.2 一元多项式的表示方法一元多项式可以使用数组、链表或其他数据结构来表示。
在本文中,我们选择使用数组来表示一元多项式。
数组的索引代表指数,数组的元素代表系数。
例如,多项式 2x^3 - 5x^2 + 3x + 1 可以表示为 [1, 3, -5, 2]。
2.3 一元多项式的存储结构为了表示一元多项式,我们可以使用一个数组来存储多项式的系数。
数组的长度应该比多项式的最高指数大1.数组的索引代表指数,数组的元素代表系数。
例如,数组 [1, 3, -5, 2] 表示的多项式 2x^3 - 5x^2 + 3x + 1 中,索引0对应指数为3的项,索引1对应指数为2的项,以此类推。
3. 一元多项式的基本运算3.1 一元多项式的加法一元多项式的加法是指将两个多项式相加,并合并同类项。
具体操作如下:- 将两个多项式的系数相加,并将结果存储在一个新的多项式中。
- 遍历新的多项式,将相邻的相同指数的项合并。
3.2 一元多项式的减法一元多项式的减法是指将一个多项式减去另一个多项式,并合并同类项。
具体操作如下:- 将两个多项式的系数相减,并将结果存储在一个新的多项式中。
- 遍历新的多项式,将相邻的相同指数的项合并。
3.3 一元多项式的乘法一元多项式的乘法是指将两个多项式相乘,并合并同类项。
具体操作如下:- 遍历一个多项式的每一项,与另一个多项式的每一项相乘。
数据结构一元多项式的运算数据结构一元多项式的运算1、引言1.1 研究背景1.2 研究目的2、一元多项式的定义2.1 一元多项式的概念2.2 一元多项式的表示方法2.3 一元多项式的次数和系数2.4 一元多项式的零多项式和常数项2.5 一元多项式的加法运算2.6 一元多项式的减法运算2.7 一元多项式的乘法运算3、一元多项式的特殊运算3.1 一元多项式的乘方运算3.2 一元多项式的取余运算3.3 一元多项式的求导运算3.4 一元多项式的积分运算3.5 一元多项式的复合运算4、一元多项式的应用4.1 一元多项式在数学中的应用4.2 一元多项式在计算机科学中的应用4.3 一元多项式在工程领域中的应用5、实例分析5.1 实例一:一元多项式的相加减5.2 实例二:一元多项式的乘法运算5.3 实例三:一元多项式的特殊运算应用6、结论附件:附件一:一元多项式的代码实现示例法律名词及注释:1.一元多项式: 指仅有一个未知数的多项式。
2.多项式的次数: 多项式中各项最高次幂的次数。
3.多项式的系数: 多项式中各项中未知数的系数。
4.零多项式: 所有系数均为0的多项式。
5.常数项: 多项式中次数为0的项,即常数项。
6.多项式的加法运算: 将两个多项式相同次项的系数相加。
7.多项式的减法运算: 将两个多项式相同次项的系数相减。
8.多项式的乘法运算: 将两个多项式的各项相乘,并根据指数相加合并同类项。
9.多项式的乘方运算: 将一个多项式自乘n次。
10.多项式的取余运算: 两个多项式相除后的余数部分。
11.多项式的求导运算: 对多项式中的每一项进行求导操作。
12.多项式的积分运算: 对多项式中的每一项进行积分操作。
13.多项式的复合运算: 将一个多项式代入另一个多项式中进行运算。
第一章 基本概念1.5 数环和数域定义1 设S 是复数集C 的一个非空子集,如果对于S 中任意两个数a 、b 来说,a+b,a-b,ab 都在S 内,那么称S 是一个数环。
定义2 设F 是一个数环。
如果 (i )F 是一个不等于零的数; (ii )如果a 、b ∈F,,并且b 0≠,aF b∈,那么就称F 是一个数域。
定理 任何数域都包含有理数域,有理数域是最小的数域。
第二章 多项式2.1 一元多项式的定义和运算定义1 数环R 上的一个文字的多项式或一元多项式指的是形式表达式()1 2012n n a a x a x a x ++++,是非负整数而012,,,n a a a a 都是R 中的数。
项式()1中,0a 叫作零次项或常数项,i i a x 叫作一次项,一般,i a 叫作i 次项的系数。
定义2 若是数环R 上两个一元多项式()f x 和()g x 有完全相同的项,或者只差一些系数为零的项,那么就说()f x 和()g x 就说是相等定义 3 nn a x 叫作多项式2012n n a a x a x a x ++++,0n a ≠的最高次项,非负整数n 叫作多项式2012n n a a x a x a x ++++,0n a ≠的次数。
定理2.1.1 设()f x 和()g x 是数环R 上两个多项式,并且()0f x ≠,()0g x ≠,那么()i 当()()0f x g x +≠时,()ii ()()()()()()()000f x g x f x g x ∂=∂+∂。
多项式的加法和乘法满足以下运算规则: 1) 加法交换律:()()()()f x g x g x f x +=+;2) 加法结合律:()()()()()()()()f x g x h x f x g x h x ++=++;3)乘法交换律:()()()()f x g x g x f x =;4) 乘法结合律:()()()()()()()()f x g x h x f x g x h x =;5) 乘法对加法的分配律: ()()()()()()()()f x g x h x f x g x f x h x +=+。