第二讲 矩阵与多项式运算
- 格式:ppt
- 大小:2.10 MB
- 文档页数:34
第二章多项式矩阵本章主要讲授多项式矩阵的基本概念和理论, 包括多项式矩阵的余数定理、Smith标准型定理和多项式矩阵的理想、互质等。
多项式矩阵的理论也是讲授第三章的重要基础。
§2.1 多项式矩阵记号:实数域R ,复数域C 。
记[]m nR λ×为n m ×的实系数多项式矩阵全体,[]m nC λ×为n m ×的复系数多项式矩阵全体。
容易验证,[]m nC λ×和[]m nR λ×分别为域C 和R 上的线性空间,[][]nn nn R C ××λλ分别为域C 和R 上的线性代数。
[]nm C A ×∈∀λλ)(,有[]λλC a ij ∈)(N N ijij ijij a a a a λλλ)()1()0()(L ++=其中令[]{})(deg max λij a N =. 则有()NNA A A A A λλλλ++++=L 2210, 其中()mxnl ijl Ca A ∈=)(。
多项式矩阵)(λA 可以看成为系数矩阵的多项式, N 称为是)(λA 的次数, 记为()[]λA N deg =注意:如果0)(=λA 则称)(λA 没有次数定义1(正则)若[]nn NN C A A A A ×∈+++=λλλλ01)(L , 且[]0det ≠N A , 则称)(λA 是正则的。
()λA 正则⇒[]n N A ×=))(det(deg λ 其中, det[()]A λ的n N ×次项系数即)det(N A定理1若)()(),(λλλA C B A nn 且×∈正则, 则∃唯一的)(1λQ 和)(1λR , 使)()()()(11λλλλR A Q B += (*)且[][]0)()(deg )(deg 11=<λλλR A R 或, 同样, ∃唯一的)(2λQ 和)(2λR 使()())()(22λλλλR Q A B += (**)且[][]0)()(deg )(deg 22=<λλλR A R 或.证明: 若[][])(deg )(deg λλA B <, 则令01=Q , B R =1, 定理得证.若[][]N A B M =≥=)(deg )(deg λλ 记N M p −=, 然后令[]nn p p pp C QQQ Q ×−−∈+++=λλλλ)0(1)1()(1)(L由(*)式可以推出[][]⎪⎪⎪⎩⎪⎪⎪⎨⎧−=−−−−=−==−−+−−−−−−−−−)()()()(1111)1(1)1()()0(11)(1)1(1)(λλλλA Q B R A A Q A Q A Q B Q A A Q B QA B Q N N p N p p N p p M N N p M p N M p L L可以验证Q 1(λ)和R 1(λ)满足定理要求.唯一性:即只需证0)(0)(0)()()()(1111==⇒=+=λλλλλλR Q R A Q B 时 假设Q 1(λ)≠00)()(1)0(1)1(1)(11≠+++=L L L Q Q Q Q Q λλλLL +=++NL N L A QR A Q λλλλ)(111)()()(由[]00det )(1≠⇒≠N L N A Q A 此时)()()(11λλλR A Q +不可能=0⇒矛盾 同理可证(**)式 #定理 2 nn C A ×∈][)(λλ正则, []nm C B ×∈λλ)(,则∃唯一的[]nm C R Q ×∈λλλ)(),(11使(*)成立, 且[][]0)()(deg )(deg 11=<λλλR A R 或;m m C A ×∈][)(λλ正则, []n m C B ×∈λλ)(, 则∃唯一的[]n m C R Q ×∈λλλ)(),(22使(**)成立, 且[][]0)()(deg )(deg 22=<λλλR A R 或.证明:仿定理1 #以上两个定理可以叫作多项式矩阵的余数定理.定义2(多项式矩阵的秩)nm C A ×∈][)(λλ, r 称为A (λ)的秩并记)]([λA rank r =,系指)(λA 的任何k ≥ r +1阶子式均为C (λ)中的零, 而A (λ)至少存在一个r 阶子式是C [λ]中的非零多项式.例:⎟⎟⎠⎞⎜⎜⎝⎛+=112)(22λλλλA 非正则但r = 2 ⇒ 非奇异 {一般多项式矩阵}⊃{满行秩或满列秩多项式矩阵}⊃{非奇异多项式矩阵}⊃{正则多项式方阵}⊃{}A I n −λ§2.2 Smith 标准型定义3(单模态矩阵)mxmC M )()(λλ∈称为单模态的, 系指0)](det[≠∈=ααλCM 常数定义4(初等矩阵)mm C ×][λ中三类[][]mj i j i j i ij m i i i i e e e e e e e e K C e e e e e K L L L L L ,,,,,,,,0,,,,,,,)(11111111+−+−+−=≠∈=αααα[][]][)(,,)(,,,,)(11λλαλαλαC e e e e e e K m i j j i ij ∈+=−L L L对A (λ)左乘相当于作行初等变换, 右乘相当于作列初等变换, 其中第3类不同于mm C ×中的初等矩阵初等矩阵的性质: 1 它的逆仍为初等矩阵2初等矩阵与单模态矩阵的关系:初等矩阵是单模态矩阵, 多个初等矩阵之积也是单模态矩阵.定义5(等价)nm C B A ×∈][)(),(λλλ称为是等价的, 系指存在m m sC M M ×∈][,1λL , nn t C N N ×∈][,1λL 均初等矩阵, 使t s N N N A M M B L L 211)()(λλ=容易证明:1.反身性:任何A (λ)与自身等价2.对称性:B (λ)与A (λ)等价⇔ A (λ)与B (λ)等价3.传递性:C (λ)与B (λ)等价, B (λ)与A (λ)等价⇒ C (λ)与A (λ)等价.定义6(行列式因子)nm C A ×∈][)(λλ, []r A rank =)(λ, 则对自然数j ≤ r , A (λ)中必有非零j 阶子式, A (λ)中全部j 阶子式的(首一)最大公因式d j (λ)称为A (λ)的j 阶行列式因子.定理3nm C A ×∈][)(λλ, []r A rank =)(λ, 则其各阶行列式因子d j (λ), j ≤r 有 r j d d j j ≤−)()(1λλ其中1)(0=λd证明:A (λ)的j 阶子式可以写成j -1阶子式以多项式为系数的线性组合, 因此, )()(1λλA d j −任一j 阶子式)()(1λλj j d d −⇒#定义7(不变因子) nm C A ×∈][)(λλ, []r A rank =)(λ, 则称)(/)()(1λλλσ−=i i i d d , r i ≤为A (λ)的不变因子.定理4 在nm C ×][λ中)()(.λλB A ⎯→←, 以)(),(λλ∧k k d d 分别表示A (λ)和B (λ)的k 阶行列式因子, 则1 [][])()(λλB rank A rank =2 [])()()(λλλA rank r k d d k k =≤=∧3 )(λA 和)(λB 有相同的不变因子.证明:容易验证初等矩阵左乘和右乘均不改变)(λA 的行列式因子, 所以结论1、2、3易证. #下面来证上述定理的逆命题.引理 1 nm ijC A ×∈=][))(()(λλαλ, 若0)(11≠λα又)(11λα不能除尽某个)(λαij , 则)()(λλA B ↔∃且[][])(deg )(deg 1111λαλβ<证明:根据不能为)(11λα除尽的元)(λαij 所处位置分为三种情形. (1) 设)(1λαi 不能为)(11λα除尽, 则有 [])](deg[)(deg )()()()(11111λαλδλδλγλαλα<+=i考虑初等矩阵[])(1λγ−i k[]))(~()(~)()(1λαλλλγiji A A K ==−其中)()(~1λδλα=i令)(~)(1λλA K B i = 则)()(.λλA B ⎯→← 且)(11λδβ=即[][])(deg )(deg 1111λαλβ< (2)设)(1λαj 不能为)(11λα除尽,证明与(1)相仿. (3) 若)(1λαi 和)(1λαj 都可被)(11λα除尽, 其中n j mi ≤≤但kl α∃不能为)(11λα除尽, 令[])()(1)(~1λλγλA K A k −=,其中)(λγ是1k α除以11α的商, 即)()()(111λαλγλα=k .此时 )(~λA 元)(~λαij 有111~αα=k , )1(~1γααα−⋅+=l kl kl . 令))(()(~)(1λγλλij k A K C =⋅=于是11111~ααγ==k ,)1(~11γαααγ−⋅+==l kl kl l . 于是l 1γ不能为11γ除尽, ⇒(2) #引理2 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=−−01)(001)(1212n n mm I N I M M L ML δδλγγλ 均为初等矩阵之积, 其中γi , δj 为多项式 证明:[][][])()()()(1331221λγλγλγλm m K K K M L =[][][])()()()(21211,11λδλδλδλK K K N n n n n L −−= [][][])()()(1313212λδλδλδn n K K K L = #引理3 nm C A ×∈][)(λλ,若 n j m i ij ≤≤αα11, 则有)(00)(.'11λαλA B B ⎯→←⎟⎟⎠⎞⎜⎜⎝⎛=, 且B’的元均能被11α除尽. 证明:因为 n j m i ij ≤≤αα11, 所以)()()(11λλαλC A ⋅=.记⎥⎦⎤⎢⎣⎡=D gf C T 1)(λ, 其中1)1(][)(×−∈m C g λλ,)1(1][)(−×∈n C f λλ,)1()1(][)(−×−∈n m C D λλ.令 ⎥⎦⎤⎢⎣⎡−=−101)(m I g M λ, ⎥⎦⎤⎢⎣⎡−=−101)(n TI f N λ. 由引理2可知, M 、N 为初等矩阵之积.⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡−='111100001)(B gf D MAN T αλα, 其中])[(11'Tgf D B −=λα, 且B ’的元均能被11α除尽. #定理5(Smith 标准型定理)nm C A ×∈)()(λλ,[]r A rank =)(λ 则⎥⎦⎤⎢⎣⎡↔000)()(λλS A (Smith 标准形)其中[])(),(),()(21λσλσλσλr diag S L =, 且1),()(1−≤+r i i i λσλσ 证明:假设m ≥ n , 对A (λ)的列数n 用归纳法 (Ⅰ) n=1时,令[]Tm A )(),()(1λαλαλL =,则1 若m i i ≤≤2)()(1λαλα则由引理3[]TA 0,0,)(11.L αλ⎯→←2 若有i α不能为1α除尽,由引理1可知有[][])(deg )(deg )()(1111.λαλβλλ<⎯→←A B若)(λB 满足条件1则结论成立, 否则又可有[][])(deg )(deg )()()(11)1(11..1λβλβλλλ<⎯→←⎯→←A B B这样重复下去, 就能有矩阵与A (λ)等价且满足条件1 所以, n =1时定理成立 (Ⅱ)假设n = l -1时定理成立 (Ⅲ)当n = l 时 1 若lj mi ij ≤≤αα11则由引理3有⎟⎟⎠⎞⎜⎜⎝⎛⎯→←'00)(11.B A αλ其中B ’的元均能被11α除尽, 由于B ’之列数l -1且[]1'−=r B rank , 按(Ⅱ)有 ⎥⎦⎤⎢⎣⎡⎯→←000'1.S B[][])1()1(321,,−×−∈=r r r C diag S λσσσL且1,2|1−=+r i i i L σσ显然2σ是B ’的一阶行列式因子, 而行列式因子对于等价矩阵是不变量, 这表明2σ是B '各元的最大公因子, 同此211|σα, 令111ασ=则定理得证.2 若存在ij α不能为11α除尽, 则由引理1可知,存在)()(.λλA B ⎯→←且[][]1111deg deg αβ<, 仿照n=1情形中条件2, 总能找到)()(~.λλA A ⎯→←使l j m i ij ≤≤,,~)(~11αλα.这就归结到条件1. #推论 1 若⎥⎦⎤⎢⎣⎡000)(λS 是nm C A ×∈][)(λλ的Smith 标准形, 则)(),(),(21λσλσλσr L 是 A (λ)的不变因子, )()()(21λσλσλσk L 是A (λ)的k 阶行列式因子.推论2 对nm C A ×∈][)(λλ,则其Smith 标准形唯一. 推论 3 若n m C A ×∈][)(λλ和nm C B ×∈][)(λλ的行列式因子或不变因子相同,则)()(.λλB A ⎯→←定理6 在n n C ×][λ中下述提法等价1 mm C M ×∈][)(λλ是单模态2 m I M ↔&)(λ 3 M (λ)是初等矩阵之积4 []mm C M M ×−∈][)()(1λλλ和证明: 1°⇒2°: 由于[]m M rark =)(λ则有],,,[)(21.m diag M σσσλL ⎯→← 由det[M (λ)]为常数, []{}m diag σσσL ,,det 21=m σσσL 21为常数(非零)m σσσL ,,21⇒均非零常数(首一)⇒2°2°⇒3° 显然3°⇒4° 初等矩阵之逆仍为初等矩阵4°⇒1° [][]1)(det )(det 1=⋅−λλM M[]=⇒)(det λM 非零常数 #§2.3 多项式矩阵的理想与互质(自学) 定义8(理想) 设nn C M ×⊂][λ是nn C ×][λ的子空间, 又具性质nn C B M A MA B ×∈∈∀∈][)(,)()()(λλλλλ则称M是nn C ×][λ的一个左理想.若M 具性质nn C B M A MB A ×∈∈∀∈][)(,)()()(λλλλλ则称M 是nn C ×][λ的一个右理想例:{}nn LC B A B X X A ×∈∀==][)(),()()()())((λλλλλλλ(其中n n C A ×∈][)(λλ)是nn C ×][λ的一个左理想.{}nn R C B B A X X A ×∈∀==][)(),()()()())((λλλλλλλ是nn C ×][λ的一个右理想.其中A (λ)称为它们的生成元.定理7 若nn C M ×∈][)(λλ是单模态, 则1° n n LL C A A M A ×∈∀=][)())()(())((λλλλλ2° n n R R C A M A A ×∈∀=][)())()(())((λλλλλ证明:1°L L L A M A M M A A M L))()(())()()(())(())()((1λλλλλλλλ⊂=⊂− ()()L L A M A )()()(λλλ=⇒ 2° 同上可证 # 定理8 n n C M ×∈][)(λλ则M 是单模态当且仅当()()R L n n M M C )()(][λλλ==×证明:n n Rn L n C I I ×==][)()(λ 当:()L n n nM C I )(][λλ=∈×()()1)(det )(det )()(=⇒=∴λλλλM N M N I n())(det λM ⇒为非零常数)(λM ⇒单模态“仅当”:由定理7, 令n I A =)(λ即可 #定义9(多项式矩阵生成的理想)若,,][)(r i C A nn i≤∈×λλ则 ()()()L r L L A A A M )()()(21λλλ+++=L 称为r i A i ≤),(λ生成的左理想, 而()()()R r R R A A A N )()()(21λλλ+++=L 称为由r i A i ≤),(λ生成的右理想定义10(互质)r i A i ≤),(λ称为左互质, 是指()()()n n Rr R R C A A A ×=+++][)()()(21λλλλL而r i A i ≤),(λ称为右互质, 是指()()()n n Lr L L C A A A ×=+++][)()()(21λλλλL定理9 r i A i ≤),(λ左互质当且仅当多项式矩阵方程n r r I X A X A X A =+++)()()()()()(2211λλλλλλL 有解.右互质当且仅当n r r I A Y A Y A Y =+++)()()()()()(2211λλλλλλL 有解.证明:r i A i ≤),(λ左互质()()()R r R R n n A A A C )()()(][21λλλλ+++=⇔×L)()()()()()(2211λλλλλλr r n X A X A X A I +++=⇔L 有解同理可证右互质情形. #定理10 r i C A nn i ≤∈×][)(λλ, 则下面各条件等价1° r i A i ≤),(λ是左互质的2°若[]rnn r C A A A A ×∈=][)()(),()(21λλλλλL则[]C nA rank ∈∀=00)(λλ3°[][]0,0,)()(),(),(21L L n rI A A A A ⎯→←=⋅λλλλ 证明:1°⇒2°⇒3°⇒1°1°⇒2° 由定理9可知有n r r I X A X A X A =+++)()()()()()(2211λλλλλλL记⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=)()()()(21λλλλr X X X X 则有n i I X A =)()(λλn I X A C =∈∀)()(o o o λλλ2°⇒3° 由[]C n A rank ∈∀=o o λλ)([]0,0),()(L λλS A ⎯→←⇒⋅其中[])(),(),()(21λσλσλσλn diag S L = 且[]n S rank =)(0λn i i ≤⇒)(λσ均无任何根(在C 中))(λσi ⇒均为非零常数 ⇒考虑首一 n I S =)(λ3°⇒1° 存在单模态矩阵nn C M ×∈][)(λλ和rnrn C N ×∈][)(λλ, 使 [][]0,,0,)()()(),(),(21L L n r I M N A A A λλλλλ=记⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=)(,),()(,),()(,),()(1221111λλλλλλλrr r r r N N N N N N N L LL L nn ij C N ×∈][)(λλ则)()(),()(111111λλλλ−−==M N X M N X r r L 可使n r r I X A X A =++)()()()(11λλλλL#同理可以证明下面定理定理11 r i C A n n i ≤∈×][)(λλ,则下述条件等价:1 r i A i ≤),(λ是右互质的2 C n A rank A A A r ∈∀=⎥⎦⎤⎢⎣⎡⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=00~1~)()()()(λλλλλM3 ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛⎯→←00)(.~M n I A λ定义11 (公因子) n n C A ×∈][)(λλ,若存在nn C C B ×∈][)(),(λλλ,使)()()(λλλC B A =,则B (λ)称为A (λ)的一个左因子, C (λ)称为A (λ)的一个右因子.若B (λ)同为A i (λ)r i ≤的左因子, 则B (λ)称为A i (λ)r i ≤的左公因子. 若F(λ)为A i (λ)r i ≤的左公因子且A i (λ)的任意左公因子都是F (λ)的左因子, 则F (λ)称为)(λi A 的最大左公因子.相似的可以有右公因子和最大右公因子的概念.定理12 n n i C A ×∈][)(λλr i ≤为左互质当且仅当其最大左公因子是单模态矩阵,而右互质当且仅当其最大右公因子是单模态矩阵.证明:左互质情形“当”:设D(λ)是单模态矩阵且为A i (λ),r i ≤的最大左公因子, 则有r i C B n n i ≤∈×][)(λλ使)()()(λλλi i B D A =令[]rn n r C A A A ×∈=][)(),()(1λλλλL 则[]n A rank ≤)(λ无妨记A(λ)的Smith 标准形为[]0,0),(L λS , 于是有单模态矩阵n n C M ×∈][)(λλ和rn rn C N ×∈][)(λλ, 使[])(0,0),()()(λλλλN S M A L =.记⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=rr r r r r N N N N N N N N N N L L L 212221211211)(λ,则有()()r r N N N MS A A A 1121121,,,,L L =⇒MS 是)(λi A 的左公因子⇒n n C F ×∈∃][)(λλ使MSF=D因为 det(D )为非零常数所以 det(S(λ))也为非零常数n I S ⎯→←⇒⋅)(λ [][]0,0,)(),(1L L n rI A A ⎯→←⋅λλ 由定理10 )(λi A ⇒左互质“仅当”:由n n iC A ×∈][)(λλr i ≤为左互质 可以推出 r i C X nn i ≤∈∃×][)(λλ使n r r I X A X A X A =++L 2211设D 是)(λi A 的最大左公因子, A i =DB i则上式变成[][]1det ))(det(1111=++⋅=++r r nr r X B X B D I X B X B DL L λ())(det λD ⇒为非零常数)(λD ⇒单模态.类似地可证右互质情形.#作业:1.求⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−20012021λλλλ和的不变因子和Smith 标准形。