一元多项式的定义和运算讲解
- 格式:ppt
- 大小:1.24 MB
- 文档页数:75
第1关:基于链表的两个一元多项式的基本运算在计算机科学中,一元多项式是常见的代数表达式形式,通常用来表示多项式函数。
虽然一元多项式的计算看似简单,但如果使用数据结构来实现,将会大大提高计算效率。
这篇文档将详细介绍基于链表的两个一元多项式的基本运算。
一元多项式的定义:在代数学中,一元多项式是一种含有一个未知数的代数多项式。
它是指一个代数式,它是由保持仅仅又有限个多项式的乘积。
此外,一元多项式在基本运算方面具有封闭性,这也是为什么它被广泛应用的原因之一。
在这里,我们将讨论在计算机科学中对一元多项式的实现。
链表的定义:链表是一种线性数据结构,其中数据元素不是常规的数组索引组织,而是通过信息存储元素之间的链来相互连接。
每个元素被称为节点,并且每个节点包含一个下一个节点的指针。
基于链表的一元多项式的实现:基于链表的一元多项式的实现涉及到将每个多项式的系数和指数存储为链表中的节点。
这种实现的主要优点是,它可以轻松地进行添加和删除操作,可以有效地分配内存,而不会浪费存储空间。
考虑到一元多项式的基本运算包括加法,减法和乘法,我们将详细介绍每种操作的实现。
一、基于链表的两个一元多项式的加法操作在实现一元多项式加法时,我们需要创建两个链表来存储两个多项式。
链表节点应该包含两个属性:系数和指数。
然后我们可以使用以下方法将两个多项式相加。
1. 定义两个指针p1和p2分别指向多项式链表的头部。
2. 定义一个新链表,用于存储相加的项。
3. 当p1和p2都不为空时循环进行以下操作:a. 如果p1当前节点的指数小于p2当前节点的指数,则将p1的节点添加到新链表中并将p1指针向下移动一个节点。
b. 如果p1当前节点的指数大于p2当前节点的指数,则将p2的节点添加到新链表中并将p2指针向下移动一个节点。
c. 如果p1和p2当前节点的指数相等,则将两个节点的系数相加,并将结果添加到新链表中,并将p1和p2指针都向下移动一个节点。
的所有剩余项添加到新链表中。
第一章 多项式§1 数域 §2 一元多项式一、数域1、定义:P 是由一些复数组成的集合,包含0和1,如果P 中的任意两个数的和、差、积、商(除数不为零)仍在P 中,则称P 为一个数域。
简单地说:P 是一个含0和1的非空集合,且对四种运算封闭。
2、例1:有理数的集合Q ,实数集合R ,复数集合C 均为数域。
例2:{}()2,2Q Q b a b a P =∈+=是一个数域。
证明:Pd c adcb d c bd ac d c d c d c b a d c b a d c d c P bc ad bd ac d c b a P d b c a d c b a P d b c a d c b a Qd c b a P d c b a P P ∈--+--=-+-+=++≠-≠+∈+++=++∈-+-=+-+∈+++=+++∈∈++∀∈+=∈+=2222)2)(2()2)(2(2202,02)5(2)()2()2)(2)(4(2)()()2()2)(3(2)()()2()2)(2(,,,,2,22011;2000)1(2222有若故P 是一个数域。
练习:证{}Q b a bi a i Q ∈+=,)(是一个数域。
二、一元多项式注:在数域P 上进行讨论,x 是一个符号。
1、定义:0111a x a x a x a n n n n ++++-- ,(-∈Z n )称为数域P 上的一元多项式。
其中P a a a n ∈,,,10 ,用 ),(),(x g x f 表示。
若0≠n a ,则称n a 为首项系数,n 为多项式的次数,用))((x f ∂表示。
0a 为常数项。
2、相等:)()(x g x f =当且仅当次数相同,对应系数相等。
3、运算:设0111)(a x a x a x a x f n n n n ++++=-- ,0111)(b x b x b x b x g m m m m ++++=-- ,m n ≥(1) 加法: )()()()()(00b a x b a x b a x g x f m m m n n n +++++++=+其中:011====+-m n n b b b())(),(max ))()((x g x f x g x f ≤+∂ (2) 乘法:snm s s j i j i m n m n m n m n m n xb a b a x b a b a x b a b a x b a x g x f ∑∑+==+-+--+⎪⎪⎭⎫ ⎝⎛=+++++++=0001001111)()()()()(若:0)(,0)(≠≠x g x f ,则))(())(())()((x g x f x g x f ∂+∂=∂ 4、运算规律:(1))()()()(x f x g x g x f +=+(加法交换律)(2)))()(()()())()((x h x g x f x h x g x f ++=++(加法结合律) (3))()()()(x f x g x g x f =(乘法交换律)(4)))()()(()())()((x h x g x f x h x g x f =(乘法结合律) (5))()()()())()()((x h x f x g x f x h x g x f +=+(分配律) (6)若,0)(),()()()(≠=x f x h x f x g x f 则)()(x h x g =(消去律) 5、多项式环。
数据结构一元多项式的运算正文:1. 引言本文档旨在介绍数据结构中一元多项式的运算方法。
一元多项式是指在一个变量上的多项式,其中每一项由一个系数和一个指数组成。
我们将会讨论一元多项式的表示、存储和基本运算,包括多项式的加法、减法、乘法和求导等操作。
2. 一元多项式的表示和存储2.1 一元多项式的定义一元多项式是指在一个变量x上的多项式,每一项由一个系数和一个指数组成,例如:2x^3 - 5x^2 + 3x + 1.其中,2、-5、3和1分别是系数,3、2、1和0分别是指数。
2.2 一元多项式的表示方法一元多项式可以使用数组、链表或其他数据结构来表示。
在本文中,我们选择使用数组来表示一元多项式。
数组的索引代表指数,数组的元素代表系数。
例如,多项式 2x^3 - 5x^2 + 3x + 1 可以表示为 [1, 3, -5, 2]。
2.3 一元多项式的存储结构为了表示一元多项式,我们可以使用一个数组来存储多项式的系数。
数组的长度应该比多项式的最高指数大1.数组的索引代表指数,数组的元素代表系数。
例如,数组 [1, 3, -5, 2] 表示的多项式 2x^3 - 5x^2 + 3x + 1 中,索引0对应指数为3的项,索引1对应指数为2的项,以此类推。
3. 一元多项式的基本运算3.1 一元多项式的加法一元多项式的加法是指将两个多项式相加,并合并同类项。
具体操作如下:- 将两个多项式的系数相加,并将结果存储在一个新的多项式中。
- 遍历新的多项式,将相邻的相同指数的项合并。
3.2 一元多项式的减法一元多项式的减法是指将一个多项式减去另一个多项式,并合并同类项。
具体操作如下:- 将两个多项式的系数相减,并将结果存储在一个新的多项式中。
- 遍历新的多项式,将相邻的相同指数的项合并。
3.3 一元多项式的乘法一元多项式的乘法是指将两个多项式相乘,并合并同类项。
具体操作如下:- 遍历一个多项式的每一项,与另一个多项式的每一项相乘。
第五章多项式5.1 一元多项式和运算定义 设F 为数域, x 为一个符号(也称不定元). 形如称为F 上关于x 的一元多项式, 一元多项式常简称多项式, 为第 i 次项,同时称 f (x ) 为n 次多项式, 记为deg f (x )=n . 当 时, 称 为 其中称 110(),nn n n f x a x a x a −−=+++ 1100[]{|,,0,1,...,}nn n n i F x a x a xa n a F i n −−≥=+++∈∈= 10,,,,n n a a a F −∈ ii a x i a 则称 f (x )为首一多项式.F 上一元多项式全体记为 0a 其中n 是非负整数,称为第i 次项系数, 称为常数项, 首项,为首项系数, 0n a ≠nn a x n a 若a n =1,注1 常数项多项式:零多项式: 零次多项式: 注200(),f x a a F =∈ .()0f x =.00()0,f x a a F =≠∈..−∞()0deg ()0.f x f x ≠≥0()0deg ()=0.f xa f x =≠定义零多项式次数为的充分必要条件是 的充分必要条件是例1ii x x x x x 23221(1)0;(2);(3);(4);(5)1π∞=+−∑定义 设是数域F 上的多项式, 如果则称f (x )与g (x )相等, 记为1110()n n n n f x a x a x a x a −−=++++ 1110()mm m m g x b x b xb x b −−=++++ i im n a b i n (0,1,2,,), ===且()().f xg x =定义 设 f (x ), g (x )是F 上多项式, 适当增加几个系数为零的项, 可设 定义加法:则 f (x ) + g (x )是 F 上多项式.1110()nn n n f x a x a x a x a −−=++++ 1110()n n n n g x b x b x b x b −−=++++ 1111100()()()()()()nn n n n n f x g x a b x a b xa b x a b −−−+=++++++++多项式的加法满足性质(1) 结合律: (f (x )+g (x ))+h (x )=f (x )+(g (x )+h (x )); (2) 交换律: f (x )+g (x )=g (x )+f (x ); (3) 存在零元: f (x )+0=f (x );对于定义 (4) 存在负元: f (x )+(–f (x ))=0.0(),nii i f x a x ==∑0()().nii i f x a x =−=−∑定义 设 定义数乘:则 cf (x ) 是 F 上多项式.1110()[],,nn n n f x a x a x a x a F x c F −−=++++∈∈ 1110()nn n n cf x ca x ca xca x ca −−=++++多项式的数乘满足性质:对任意的有 (5) c (f (x )+g (x ))=cf (x )+cg (x ); (6) (c +d )f (x )=cf (x )+df (x ); (7) (cd )f (x )=c (df (x )); (8) 1f (x )=f (x ).(),()[],,,f x g x F x c d F ∈∈定理 F [x ]关于多项式的加法与数乘构成 F 上的线性空间.注 F [x ]是无限维线性空间. 对任意正整数n ,线性无关.证明 若 由多项式相等定义, 即得 故线性无关. 21,,,,nx x x 20120,nna a x a x a x ++++= 0120.na a a a ===== 21,,,,nx x x定义 设定义乘法:其中则 f (x )g (x ) 是 F 上多项式.11101110()[],()[],n n n n m m m m f x a x a x a x a F x g x b x b x b x b F x −−−−=++++∈=++++∈ 1110()()m nm n m n m n f x g x c xc xc x c ++−++−=++++ 0110(0,1,,)k i j k k k i j kc a b a b a b a b k m n −+===+++=+∑多项式的乘法满足性质:对任意的 有 (9) (f (x )g (x )) h (x )=f (x )(g (x ) h (x )); (10) f (x )g (x )=g (x )f (x );(11) (f (x )+g (x ))h (x )=f (x ) h (x )+g (x ) h (x ); (12) c (f (x )g (x ))=(cf (x ))g (x )= f (x )(cg (x )). 定理 F [x ]关于多项式的加法,数乘和乘法构成 F 上带单位元1的交换代数.(),(),()[],f x g x h x F x c F ∈∈引理设f(x), g(x)是F上多项式, c是F上非零数, 则(1) deg (f(x) + g(x)) ≤ max{deg f(x), deg g(x)};(2)deg (cf(x))= deg f(x);(3) deg(f(x)g(x)) = deg f(x) + deg g(x).证明 (3) 若f(x), g(x)有一个为零多项式, 则命题成立.若f(x), g(x)均为非零多项式, 首项分别为a n x n, b m x m, 则f(x) g(x)首项为a n b m x n+m , a n b m ≠0,因此deg f(x) g(x) = n+m.命题若f(x), g(x)是F上非零多项式, 则f(x)g(x)也是F 上非零多项式.证明因为f(x), g(x)是F上非零多项式, 因此它们的次数均大于等于0,又 deg (f(x)g(x)) = deg f(x) +deg g(x) ≥ 0,故 f(x)g(x) 是非零多项式.推论若f(x)是非零多项式, 且f(x) g(x) = f(x) h(x), 则g(x) = h(x).证明因为f(x) g(x) = f(x) h(x),所以f(x)(g(x) - h(x))=0.又因为f(x)≠0,则由命题有g(x) - h(x)=0,所以g(x) = h(x).例2 设 且f 2(x )+ g 2(x )=0, 则f (x )=g (x )=0.证明 反证法 假设f (x )≠0 或者g (x )≠0, 记 不妨设n ≥m , 则f 2(x )+ g 2(x )首项系数为, 故f 2(x )+ g 2(x )的首项系数不为0, 矛盾. 注 例2结论对复数域不成立. 如 110110(),0,(),0,nn n n n i m m m m m i f x a x a xa a a g xb x b xb b b −−−−=+++≠∈=+++≠∈222+,n nna b a 或221+=0,10,0.i i ≠≠但(),()[],f x g x x ∈ n na b ,∈小结(1) 一元多项式的定义、运算(2) 次数、首项(3) 主要证明方法: 次数, 首项。
一元多项式计算与链表概述及解释说明1. 引言1.1 概述在计算机科学和数学领域,一元多项式计算是一个重要的问题。
一元多项式是指包含一个未知数的多项式,它由各个项的系数和指数决定。
而链表作为一种常见的数据结构,具有灵活性和高效性,可以应用于各种问题的解决中。
1.2 文章结构本文将首先对一元多项式计算进行介绍,包括多项式的定义与表示方法、多项式加法运算以及多项式乘法运算。
然后,我们将详细探讨链表的概念、特点以及链表在一元多项式计算中的应用。
接下来,将通过实例演示来解释一元多项式计算,并说明链表结构在多项式计算中的优势。
最后,我们将分享解决一元多项式计算问题时相关的考虑事项与技巧,并对研究内容进行总结,并展望其可能的拓展方向。
1.3 目的本文旨在向读者介绍和解释一元多项式计算与链表之间的关系,并探讨链表在该问题中所起到的作用。
通过深入了解一元多项式及其计算方法,以及链表数据结构原理和应用场景,读者将能够更好地理解一元多项式的计算过程,并了解链表在提高计算效率和灵活性方面的重要作用。
同时,通过分享解决问题时的考虑事项与技巧,本文还有助于读者在实际应用中更好地利用链表结构来解决一元多项式计算问题。
2. 一元多项式计算:2.1 多项式定义与表示方法:一元多项式是由若干个单项式构成的代数表达式。
一个单项式由系数和指数组成,通常可以表示为a*x^b的形式,其中a为系数,x为未知数,b为指数。
而一个多项式则是由多个单项式相加得到。
在计算机中,可以用数组或链表来表示一元多项式。
使用数组时,每个元素可以存储一个单项式的系数和指数;而使用链表时,则可以将每个单项式作为节点存储在链表中。
2.2 多项式加法运算:两个多项式相加时,需要将同一个指数的单项式进行合并并对系数进行相加。
具体步骤如下:- 将两个多项式中所有的不同指数提取出来形成一个集合。
- 遍历集合中的每个指数,在两个多项式中查找该指数对应的单项式。
- 如果某个多项式不存在该指数的单项式,则该指数对应的系数为空。
第二章 多 项 式§2.1 一元多项式的定义和运算2.1.1 教学目的2.1.1.1 掌握多项式、多项式相等、多项式次数的概念。
2.1.1.2 掌握多项式加法、减法与乘法的法则和性质。
2.1.2 教学重点多项式的概念,多项式的运算法则和性质。
2.1.3 教学难点对多项式形式表达式的理解。
2.1.4 教学过程本节所说的R ,指的是含1的数环。
一、一元多项式的一些基本概念Def 1: 数环R 上文字x 的多项式或一元多项式指的是形式表达式 n n 2210x a x a x a a ++++ (1) 这里n 是非负整数,0a ,1a ,…,a n 是R 中的数。
在(1)中0a 叫零次项或常数项,i i x a 叫i 次项,i a 叫i 次项的系数, 一元多项式常用f(x)、g(x)表示.Def 2: 若是数环R 上两个多项式f(x)和g(x)有完全相同的项或者只差一些系数为零的项,则称f(x)=g(x).如 1+0x+5x 2+0x 3=1+0x+5x 2=1+5x 2 ,3+1x+2x 2=3+x+2x 2≠3+x+x 2 Def 3:在多项式中n n 2210x a x a x a a ++++ ,若a n ≠0,n n x a 叫多项式的最高次项,非负整数n 叫多项式的次数多项式f(x)的次数记作0∂(f(x)). 零多项式记为0且是唯一不定义次数.所以以后谈到多项式)x (f 的次数时总假定0)x (f ≠。
非零常数是零次多项式,它的次数为0,有次数。
二、多项式的运算 (一)运算的定义设nn x a x a x a a x f ++++= 2210)(, 或∑==ni ii x a x f 0)(mm x b x b x b b x g ++++= 2210)(, 或∑==mj j j x b x g 0)(; 是数环R 上两个多项式,并且m ≤n ,则定义:一)加法f(x)+g(x)=(a 0+b 0)+(a 1+b 1)x+…+(a m +b m )x m +…+(a n +b n )x n当m<n 时取b m+1=…=b n =0,或∑=+=+ni ii i x b a x g x f 0)()()(. 二)减法设f(x)=a 0+a 1x+…+a n x n ,把-f(x)=-a 0-a 1x -…-a n x n 叫f(x)的负多项式,则定义:f(x)-g(x)=f(x)+(-g(x)),或∑=-=-n i ii i x b a x g x f 0)()()(1)在Def1中文字x 不一定代表“数”,可以是一个矩阵A ,或一个变换等,因此不能把x 当作“未知数”2)“n 为非负整数”说明表达式x 1x ,x 1+等都不是多项式。