无交分线岔
- 格式:ppt
- 大小:4.14 MB
- 文档页数:18
分段绝缘器新检规第一百四十五条分段绝缘器〔一〕分段绝缘器通过速度不得超过12021h。
空气绝缘间隙不小于300mm。
〔二〕分段绝缘器主绝缘应完好,其外表放电痕迹应不超过有效绝缘长度的2021主绝缘严重磨损应及时更换。
〔三〕分段绝缘器应位于受电弓中心,一般情况下偏差不超过100mm。
相对于两侧吊弦点有5~15mm的负弛度。
滑道底面应平行于轨面,最大偏差不超过10mm。
〔四〕分段绝缘器导线接头、导流滑道端头处过渡平滑。
承力索分段绝缘子应采用重量较轻的有机复合绝缘子。
〔五〕分段绝缘器不应长时间处于对地耐压状态。
雨、雪、雾、霾、冻雨等恶劣天气下,起电分段作用的隔离开关严禁处于分闸状态。
隔离开关应在作业开始前30分钟内断开,在作业间歇时间大于30分钟时应闭合,继续作业时再断开,作业结束后应及时闭合。
〔六〕分段绝缘器安装位置符合规定,距离定位点不得小于2m。
一、维修工程及作业标准1、绝缘件及绝缘间隙检查维修标准〔1〕绝缘棒外表应清洁、无烧伤、裂纹,外表放电痕迹不应超过有效长度的2021绝缘棒直径为2021m的圆形棒,每面磨损小于mm 。
〔2〕两绝缘棒的中心距离为80 mm,同一侧两滑板的放电角隙的夹角为60°,空气间隙〔角隙〕≥300 mm。
2、整体及各部配合参数检查维修标准〔1〕接触线和承力索形成的截面必须与轨平面垂直,并处于轨道中心,允许误差±50 mm。
〔2〕滑板下边缘必须低于绝缘棒末端下边缘4mm。
从接触线到滑板的过渡以及从滑板到绝缘棒的过度不应有任何高度差异。
〔3〕如果由于电弧使滑板下边缘与消弧角上边缘之间的距离小于100mm或滑板的剩余截面不能保证稳定性〔滑板磨损>3mm时〕,需要更换。
〔4〕分段绝缘器安装高度,严格按设计行车速度所要求的抬升力,用钢尺和弹簧称测取所安装的高度值,允许偏差为±5mm。
不同行车速度所要求的抬升力如下:100㎞/h为100N,160㎞/h 为120212021/h为150N。
时速200km/h铁路AT供电隧道内的无交叉道岔布置方案的探讨发布时间:2022-09-15T05:21:11.327Z 来源:《建筑创作》2022年第2月4期作者:周勇[导读] 时速200km/h铁路正线道岔接触网布置一般采用无交叉道岔周勇中铁武汉电气化局集团第一工程有限公司湖北武汉 430000摘要:时速200km/h铁路正线道岔接触网布置一般采用无交叉道岔,当道岔设置在隧道内时,腕臂装配的设置就会受到隧道空间受限、各种附加导线安全距离和建筑限界等条件限制设置较为困难,特别是接触网采用AT供电方式更为困难,本文通过介绍黔张常铁路隧道内道岔布置方案,总结一套出较为成熟、安全的技术方案,给予同类铁路设计、施工提供参考和借鉴。
关键词:隧道内无交叉道岔方案探讨中图分类号:文献标识码:文章编号:0 引言时速200km/h及以上铁路正线道岔接触网一般采用无交叉道岔布置方案,在山区铁路建设时存在道岔设置在隧道内情况。
当道岔设置在隧道内时存在:双线隧道隧道净空过低、与各种附加导线的安全距离、线间距小以及建筑限界难满足等问题,特别是采用AT供电方式时,在隧道空间和线间距受限情况下对吊柱位置选择、腕臂装配形式更需要谨慎布置保证弓网的安全运行,本文通过介绍黔张常铁路在隧道内的无交分线岔实际布置案例,探讨在隧道内道岔吊柱、腕臂结构设置方案,总结一套出较为成熟、安全的技术方案,给予同类铁路设计、施工提供参考和借鉴。
1 隧内无交叉道岔平面布置方案设计时速为200km/h的铁路,正线18#道岔接触网基本采用无交分道岔布置。
无交分道岔显著特点是岔区正线、测线2组接触线悬挂彼此分离无交叉点,也没有线岔设置,所以不会产生刮弓隐患和线岔硬点,提高接触悬挂的弹性均匀性,加之其特殊的正、侧先接触网布置方式,确保了正线高速通过时不受测线接触网影响,而列车从正线驶向测线或从测线驶入正线时能平稳过渡。
黔张常铁路无交分道岔平面布置方案见图1,从道岔开口侧向岔尖分别布置A、B、C柱,设置3个道岔柱,拉出值及高度设置见表1。
广深港客运专线交叉线岔、无交叉线岔调整技术交底交底内容交底范围广深港客运专线广深段(含深北动车运用所),交叉线叉和无交叉线叉调整技术标准。
号、12号交叉线叉交叉线叉的平面示意图线岔型号的选择应根据交叉点至中心锚结的距离选择,在平均温度安装时线岔中点位于交叉点上,次要线在线岔内应能随温度变化自由伸缩,线岔距上部接触线应有1~3mm间隙线岔型号的选择:当交叉点距中心锚结距离大于500米时用700型线岔。
当距离小于500米时线岔型号用500型。
单开道岔标准定位两接触线应相交于道岔导曲线两内轨、轨距630-760mm的横向中间位置,施工偏差为±50mm。
非标定位12号道岔,两接触线交于道岔导曲线两内轨630-935mm横向中间位置,如9号道岔那么为630-1035mm横向中间位置。
交叉线岔采用交叉吊弦,交叉吊弦指正线承力索在此处悬吊侧线接触线、侧线承力索交叉悬吊正线接触线。
交叉吊弦其他吊弦的间距仍按正常取值及6~10m。
始出区前安装一组交叉吊弦安装在550~600mm,具体安装方式见下列图示调整时先找出630mm横向中间位置及760mm横向中间位置并做一连线,此连线既为两接触线交点位置,调整道岔定位柱拉出值〔按设计〕,检查接触线交叉位置是否投影在连线上,在调整时任何情况下,定位点拉出值不得大于450mm,由以上可看出,由于定位柱位置等施工误差,设计拉出值为近似值,可适当调整拉出值。
始出区内的交叉吊弦处,侧线接触线抬高20mm,道岔柱定位点处侧线接触线抬高30mm。
始出区范围内〔受电弓中心距相邻一支接触线的距离为600~1050mm的范围〕不可安装任何线夹及金具。
18#道岔处无交叉线岔无交叉线岔装置分正线18#定位和侧线18#定位,具体定位示意图见交叉线叉、无交叉线叉技术交底CC01对正线拉+1400mm,CC02对正线拉-CB01对侧线拉+1100mm,CB02对正线拉+200mm CA01对侧线拉-50mm,CA02对正线拉-150mm200mm CB01接触线比CC02高120mmCA01接触线比CA02高20mm CC01接触线比CC02高450mm CB01使用特型定位器、旋转吊柱支座CA01使用特型定位器、旋转吊柱支座1122 11 211222ZC01对正线拉-800mm,ZC02对正线拉200mmZB01对侧线拉-1100mm,ZB02对正线拉-200mmZB01接触线比ZB02高120mmZC01接触线比ZC02高500mmZA01对侧线拉+50mm,ZA02对正线拉+150mmZA01接触线比ZA02高20mmZA01使用特型定位器、定位器支座始出区范围内〔受电弓中心距相邻一根接触线的距离为600mm~1050mm〕不可安装除吊弦线夹外的任何线夹和金具。
铁路接触网第三辅助式无交分线岔布置技术发表时间:2019-03-26T09:49:35.247Z 来源:《电力设备》2018年第30期作者:胡志华[导读] 摘要:文章结合哈大高铁施工现场实践,探讨了高速铁路42号第三辅助式无交分线岔布置方案,分析了接触网线岔设计、安装、施工技术。
(中铁电气化局集团公司北京 100036)摘要:文章结合哈大高铁施工现场实践,探讨了高速铁路42号第三辅助式无交分线岔布置方案,分析了接触网线岔设计、安装、施工技术。
此种无交分线岔布置特点为在道岔岔心附近,无论是正线或者侧线高速通过机车受电弓始终与辅助锚段相互作用,极大地减少了对正线接触网的冲击性,速度适应性好,弓网性能更佳,尤其是对侧向通行要求更高的高速道岔被大量应用。
关键词:第三辅助;接触网线岔;辅助锚段1前言随着我国电气化铁路的快速发展,动车组的运行速度不断提高,对接触网的性能提出了更高的要求。
线岔作为高速电气化铁路接触网的薄弱环节,线索空间几何参数关系和受流质量的好坏直接影响着动车组安全、平稳通过正线和侧线的进出,对高速铁路的安全、高速、稳定运行起着举足轻重的作用。
2无交分线岔结构形式及工作原理2.1两种无交分线岔的区别“两支悬挂”无交分线岔布置时,在道岔区域侧线相应的抬升 20mm,使得当正线高速通过时,机车受电弓不与侧线发生空间关系;由正线进入侧线时,受电弓平滑自然地过渡到侧线接触悬挂中,由侧线进入正线时,受电弓通过“挤压”方式逐渐过渡到正线接触悬挂中。
侧向允许通过最大速度85km/h。
“三支悬挂”无交分线岔布置时,在正线和侧线之间增加一个第三辅助锚段,形成关节式过渡。
基于关节式过渡的原理,当电力机车从正线高速通过时,侧线位于受电弓动态包络线之外,受电弓由正线过渡到辅助锚段接触悬挂,通过道岔后将再次过渡到正线接触悬挂。
从侧线通过原理类似于正线通过原理。
侧线允许通过最大速度 160km/h。
“三支悬挂”第三辅助式无交分线岔很好的弥补了“两支悬挂”无交分线岔的不足之处,利用第三辅助锚段形成关节式过渡,极大的提高了侧向通行速度,满足安全运营的要求。
高速铁路无交叉线岔检调原理及方法发表时间:2019-01-08T10:20:45.280Z 来源:《建筑学研究前沿》2018年第30期作者:杨殊伦[导读] 本文参照标准18号无交叉线岔检调标准,通过对无交分线岔运行特性进行分析,对非标准无交叉线岔日常检修提出检调方法。
上海铁路局上海高铁维修段宁杭车间摘要:接触网的线岔是关系行车安全的关键设备之一,接触网在道岔区的平面布置,即要做到结构简单、便于检修调整、维护工作量少,又能满足接触网系统硬点、弹性等指标,保证受电弓从正线高速通过,从正线进入侧线、从侧线进入正线等过程中的行车安全和供电质量。
道岔处接触网的平面布置取决于道岔类型、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。
经对宁杭高铁现场测量复核发现,因线路建设阶段施工原因,宁杭高铁站场存在大量道岔柱定位不标准的无交叉线岔,且非标准无交叉线岔检调在日常检修中缺少规范标准及技术支持,不利于日常检修及设备安全。
本文参照标准18号无交叉线岔检调标准,通过对无交分线岔运行特性进行分析,对非标准无交叉线岔日常检修提出检调方法。
关键词:宁杭高铁;无交叉线岔1 绪论1.1前言在电气化铁道上运行的列车通过道岔时,要进入两组或三组接触悬挂并存的接触网区。
道岔区接触网布置的研究集中在合理布置几组接触悬挂的空间位置,既要做到结构简单、便于检修调整、维护工作量少,又要能够满足接触网系统硬点、弹性等指标,保证受电弓从正线高速通过、从侧线进入正线等过程中的行车安全和供电质量。
1.2道岔区接触网布置类型道岔处接触网的平面布置取决于道岔类型、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。
随着高速铁路建设的蓬勃发展,列车运营速度不断提高,通过对世界各国道岔区接触网布置的研究和借鉴,不断摸索道岔区接触网布置方式,逐渐形成我国的技术体系。
道岔处接触网布置方式主要分为交叉和无交叉方式,无交叉方式分为两支无交叉和带辅助锚段的三支无交叉布置方式。
武广客运专线接触网无交叉线岔的安装与调整一、武广线无交叉线岔的结构与形式武广客运专线与正线相交的道岔均采18#道岔,道岔全长L=69.00米,前端长度A=31.729米,后端长度B=37.271米。
道岔侧股平面线选用圆曲线与直线相切的连接方式。
接触悬挂采用无交叉线岔,共设两个道岔定位柱,一个转换柱,其原理类似于三跨锚段关节。
道岔柱定位柱A设在道岔开口方向距理论岔心25米左右,即两线间距1400mm处;道岔定位柱B设在道岔开口反方向距离理论岔心15米,即两线间距150mm处。
侧线接触线过道岔柱A、道岔柱B后,由转化柱C抬高下锚。
道岔定位柱A、B和转换柱C均采用双腕臂悬挂形式,即正线与侧线接触网单独悬挂,在温度变化时可纵向自由移动,互不干扰。
在两导线间距550~600mm处采用交叉吊弦悬挂,以保证正线通过或侧线驶入正线时在该点两支接触线等高。
1、平面布置如图1所示2、工作支、非工作支接触线高度走向,如图2所示二、无交叉线岔工作原理道岔处接触网的平面布置取决于道岔种类信息、受电弓工作宽度、受电弓的动态运行轨迹(最大摆动量和最大抬升量)。
武广设计采用UIC 608 Annex 4a 标准宽度为1950mm的受电弓,弓头工作宽度为1450mm;受电弓动态包络线左右晃动量:直线为250mm,曲线为350mm;动态最大抬升量按150mm考虑。
无交叉线岔平面布置时,应使侧线接触线和正线线路中心的距离大于两接触间的距离。
1、电力机车正线高速通过受电弓最外端尺寸的半宽为725mm,摆动量为250mm,升高后的加宽为150mm。
所以受电弓在侧线侧最外端可触及到的尺寸限界为:725+250+150=1125mm。
线岔平面布置如图1所示,其中B柱正线拉出值为-400、侧线拉出值为-1100,支柱位于两线路中心间距150mm 位置,所以受电弓在侧线侧最外端可触及限界1125mm<1100+150=1250mm 。
A柱侧线拉出值150mm、正线拉出值150,支柱位置处两线间距1400mm。