二阶和三阶行列式(一)
- 格式:doc
- 大小:314.50 KB
- 文档页数:5
二阶三阶行列式计算方法行列式是线性代数中的一个重要概念,它是一个数学工具,用于描述矩阵的性质和变换。
在实际应用中,行列式经常用于求解线性方程组、计算矩阵的逆、判断矩阵是否可逆等问题。
本文将介绍二阶三阶行列式的计算方法。
二阶行列式二阶行列式是一个2×2的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$是矩阵中的元素。
例如,对于矩阵$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$,它的二阶行列式为:$$\begin{vmatrix}1 &2 \\3 & 4\end{vmatrix} = 1\times4 - 2\times3 = -2$$三阶行列式三阶行列式是一个3×3的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$是矩阵中的元素。
矩阵论基础1.1⼆阶和三阶⾏列式第⼀节⼆阶和三阶⾏列式在介绍⾏列式概念之前,我们先构造⼀个数学玩具:把4个数放在⼀个正⽅形的四个⾓上,在加上两条竖线,即,规定这个玩具对应于⼀个结果:两个对⾓线上的数的乘积之差。
即例如所在⽅向的对⾓线称为主对⾓线,所在⽅向的对⾓线称为副对⾓线。
定义1 4个数称为⼀个⼆阶⾏列式;所在的⾏称为第⼀⾏,记为(r来源于英⽂row),所在的列称为第⼆列,记为(c来源于英⽂column),因其共有两⾏两列,所以称为⼆阶⾏列式,是第⼆⾏第⼀列的元素。
⼀般地⽤表⽰第i⾏第j列的元素,i是⾏标,j是列标。
可叙述为:⼆阶⾏列式的对应值等于主对⾓线上两元素之积减去的副对⾓线上⼆元素之积所得的差, 这⼀计算法则称为对⾓线法则.此玩具的⽤途在于:求解⽅程组⽤消元法,先消去所在的项,⽅程(2)´a11,⽅程(1)´a21得(3)-(4),得再消去所在的项,⽅程(2)´a12,⽅程(1)´a22得(5)-(6),得我们发现其规律为:若记是⽅程组的系数⾏列式,则是⽤常数项替代D中的第⼀列所得的⾏列式;是⽤常数项替代D中的第⼆列所得的⾏列式。
若D≠0,⽅程组的恰好是:,此规律被称为Cramer定理。
例1 求解⼆元线性⽅程组解:,,,因此 , .同理类推,⽤对⾓线法则可以定义3阶⾏列式如下:其中来⾃三条主对⾓线上三个元素的乘积,前⾯加正号;来⾃三条副对⾓线上三个元素的乘积,前⾯加负号。
例2 计算3阶⾏列式解:D=1×2×2+3×1×1+3×1×(-1)-1×2×3-(-1)×1×1-2×1×3=-7D1=6×2×2+4×1×1+11×1×(-1)-1×2×11-(-1)×1×6-2×1×4=-7D2=1×4×2+3×11×1+3×6×(-1)-1×4×3-(-1)×11×1-2×6×3=-14D3=1×2×11+3×1×6+3×1×4-6×2×3-4×1×1-11×1×3=--21实际上,D,D1,D2,D3来⾃线性⽅程组。
二阶三阶行列式1.引言1.1 概述二阶行列式和三阶行列式是线性代数中常见的概念。
行列式是一个整数或实数的方阵,它具有很多重要的性质和应用。
二阶行列式是一个2×2的方阵,而三阶行列式是一个3×3的方阵。
在本文中,我们将介绍二阶行列式和三阶行列式的定义以及计算方法,并总结它们的特点和重要性。
在二阶行列式部分,我们将详细介绍二阶行列式的定义和计算方法。
二阶行列式的定义是由其中的四个元素按一定的规则相乘再相减得到的一个数值。
计算二阶行列式可以使用简单的公式,即将对角线上的两个元素相乘再相减。
我们将提供详细的计算示例,并讨论二阶行列式在几何学和线性方程组中的应用。
在三阶行列式部分,我们将进一步介绍三阶行列式的定义和计算方法。
三阶行列式的计算比较复杂,需要按一定的规则进行乘法和加减运算。
我们将解释这些规则,并提供实际的计算例子。
此外,我们还将探讨三阶行列式在向量空间和线性方程组中的应用,以及它们与二阶行列式之间的关系。
通过本文的学习,读者将能够理解二阶行列式和三阶行列式的概念和计算方法。
同时,他们还将认识到行列式在数学和实际应用中的重要性。
了解行列式可以帮助我们解决各种问题,包括求解线性方程组、计算向量的正交性和计算面积和体积等。
行列式是线性代数中的基础知识,对于进一步学习和应用线性代数的内容具有重要的意义。
1.2文章结构1.2 文章结构本文将首先介绍二阶行列式的概念和定义,详细阐述其计算方法。
然后,我们将进一步探讨三阶行列式的定义和计算方法。
在分析和比较二阶行列式与三阶行列式的异同之后,我们将总结这两者的特点和应用。
本文的主要目的是通过对二阶和三阶行列式的研究,帮助读者更好地理解和应用行列式的相关概念和计算方法。
具体来说,本文的内容安排如下:2. 正文2.1 二阶行列式2.1.1 定义在这一部分中,我们将引入二阶行列式的概念,并详细解释其定义。
通过具体的例子,我们将展示如何构建并计算二阶行列式。
(1)二阶行列式—--导学案供稿人—赵艳波学习目标:1.了解行列式产生的背景;2.经历引入二阶行列式的过程;3.掌握二阶行列式展开法则及用二阶行列式解(系数行列式的值不为零的)二元一次方程组的方法,体验二阶行列式这一特定算式的特征. 学习重点:二阶行列式的展开、用二阶行列式解二元一次方程组.学习难点:二阶行列式的展开、用二阶行列式解二元一次方程组 学习过程一 知识链接:行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具.行列式概念第一次在西方出现,是1693年在莱布尼茨给洛必达的一系列信中出现的,据此,莱布尼茨得到了发明行列式的荣誉.然而,1683年在日本数学家关孝和(被誉为“算圣”、“日本的牛顿”)的著作《解伏题元法》中就有了行列式的概念.德国数学家莱布尼茨是与牛顿齐名的微积分的创始人,同时他又是数学史上最伟大的符号学者之一,堪称符号大师,他曾说:“要发明,就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物内在本质,从而最大限度地减少人的思维劳动”.他创造的数学符号有商“ba”、比“a :b ”、相似“∽”、全等“≌”、并“ ”、交“ ”等,最有名的要算积分和微分符号了. 二 新知导学:1.二阶行列式的引入设二元一次方程组(*)⎩⎨⎧=+=+222111c y b x a c y b x a(其中y x ,是未知数,2121,,,b b a a 是未知数的系数且不全为零,21,c c 是常数项.)用加减消元法解方程组(*).当01221≠-b a b a 时,方程组(*)有唯一解:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112211221b a b a c a c a y b a b a b c b c x ,引入记号21a a 21b b 表示算式1221b a b a -,即 21a a 21b b 1221b a b a -=. 2.行列式的相关概念:行列式 二阶行列式 行列式的展开式行列式的值 行列式的元素 对角线法则=D 21a a21b b ,=x D 21c c21b b ,=y D 21a a21c c ,则当=D21a a 21b b =01221≠-b a b a 时,方程组(*)有唯一解,可用二阶行列式表示为⎪⎪⎩⎪⎪⎨⎧==DD y D D x y x . 三.新知探究例1.展开并化简下列行列式: (1)8521 (2)8125(3)θθsin cos θθcos sin -(4)11-a 112++-a a说明:①正确运用对角线法则展开;②由(1)(2)可知,行列式中元素的位置是不能随意改变的.例2.用行列式解下列二元一次方程组:(1)⎩⎨⎧-=+=+61548115y x y x(2)⎩⎨⎧=-+=--012053y x y x说明:①当所给方程组的形式不是方程组(*)的形式时,应先化为方程组(*)的形式,才能得到正确的x D 和y D ;②注意到这两个方程组的系数行列式的值均不为零.知识拓展①二阶行列式展开的逆向使用的问题;如:算式ac b 42-可用怎样的二阶行列式来表示等.②二阶行列式的值为零时,行列式中的元素有何特征? ③举例说明,当二元一次方程组的系数行列式的值为零时,方程组的解会有怎样的可能 四.知识巩固与检测1.展开并化简下列行列式: (1)4321--; (2)122m ; (3)yx yy y x --+2.将下列各式用行列式表示:(1)mn ab +; (2)y x y x sin cos cos sin +3.用行列式解下列二元一次方程组: (1)⎩⎨⎧=-=+1232y x y x ; (2)⎩⎨⎧=-+=+-09205.07.05.1y x y x五.学后体会:六.学后作业1.计算下列行列式的值 (1)=-2431 (2)=-xx xx sin cos cos sin(3)=a b b a log 11log (4)=+-+-yx x x y x aa a a 11 2.用行列式表示下式(1)=-ac b 42(2)=+-242x x 3.如果121lg +x x 有意义,求实数x 的范围。
12n n n n nn n a x a x a x +++= (1。
2。
1) 1b ,(1.2.2)引入符号称为三阶行列式((1。
2。
2)的系数行列式)。
当系数行列式0≠D 时,三元一次方程组(1.2.2)有惟一解, 其中 DD x D Dx D D x 332211,,===3、三阶行列式的对角线法则:=312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a ---++补充:三阶行列式具有以下特点:(1)三阶行列式值的每一项都是位于不同行,不同列的三个元素的乘积,除去符号,每项的三个元素按它们在行列式中的行的顺序排成332211p p p a a a ,其中第一个下标(行标)都按自然顺序排列成123,而第二个下标(列标)排列成 321p p p ,它是自然数1,2,3的某个排列;(2)各项所带的符号只与列标的排列有关:带正号的三项列标排列:123 ,231,312 ;带负号的三项列标排列是:132,213,321.前三个排列为偶排列,而后三个排列为奇排列,因此各项所带符号可以表示为t)1(-,其中111122133121122223323113223332a x a x a x b a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩,,,111213212223313233a a a D a a a a a a =112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a =++---1121312222333233,b a a D b a a b a a =1111322122331333,a b a D a b a a b a =1112132122231323a ab D a a b a a b =简记为)det(ij a D =。