二阶与三阶行列式
- 格式:ppt
- 大小:1.63 MB
- 文档页数:26
二阶三阶行列式计算方法行列式是线性代数中的一个重要概念,它是一个数学工具,用于描述矩阵的性质和变换。
在实际应用中,行列式经常用于求解线性方程组、计算矩阵的逆、判断矩阵是否可逆等问题。
本文将介绍二阶三阶行列式的计算方法。
二阶行列式二阶行列式是一个2×2的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$是矩阵中的元素。
例如,对于矩阵$\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$,它的二阶行列式为:$$\begin{vmatrix}1 &2 \\3 & 4\end{vmatrix} = 1\times4 - 2\times3 = -2$$三阶行列式三阶行列式是一个3×3的矩阵,它的计算方法如下:$$\begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$是矩阵中的元素。
矩阵论基础1.1⼆阶和三阶⾏列式第⼀节⼆阶和三阶⾏列式在介绍⾏列式概念之前,我们先构造⼀个数学玩具:把4个数放在⼀个正⽅形的四个⾓上,在加上两条竖线,即,规定这个玩具对应于⼀个结果:两个对⾓线上的数的乘积之差。
即例如所在⽅向的对⾓线称为主对⾓线,所在⽅向的对⾓线称为副对⾓线。
定义1 4个数称为⼀个⼆阶⾏列式;所在的⾏称为第⼀⾏,记为(r来源于英⽂row),所在的列称为第⼆列,记为(c来源于英⽂column),因其共有两⾏两列,所以称为⼆阶⾏列式,是第⼆⾏第⼀列的元素。
⼀般地⽤表⽰第i⾏第j列的元素,i是⾏标,j是列标。
可叙述为:⼆阶⾏列式的对应值等于主对⾓线上两元素之积减去的副对⾓线上⼆元素之积所得的差, 这⼀计算法则称为对⾓线法则.此玩具的⽤途在于:求解⽅程组⽤消元法,先消去所在的项,⽅程(2)´a11,⽅程(1)´a21得(3)-(4),得再消去所在的项,⽅程(2)´a12,⽅程(1)´a22得(5)-(6),得我们发现其规律为:若记是⽅程组的系数⾏列式,则是⽤常数项替代D中的第⼀列所得的⾏列式;是⽤常数项替代D中的第⼆列所得的⾏列式。
若D≠0,⽅程组的恰好是:,此规律被称为Cramer定理。
例1 求解⼆元线性⽅程组解:,,,因此 , .同理类推,⽤对⾓线法则可以定义3阶⾏列式如下:其中来⾃三条主对⾓线上三个元素的乘积,前⾯加正号;来⾃三条副对⾓线上三个元素的乘积,前⾯加负号。
例2 计算3阶⾏列式解:D=1×2×2+3×1×1+3×1×(-1)-1×2×3-(-1)×1×1-2×1×3=-7D1=6×2×2+4×1×1+11×1×(-1)-1×2×11-(-1)×1×6-2×1×4=-7D2=1×4×2+3×11×1+3×6×(-1)-1×4×3-(-1)×11×1-2×6×3=-14D3=1×2×11+3×1×6+3×1×4-6×2×3-4×1×1-11×1×3=--21实际上,D,D1,D2,D3来⾃线性⽅程组。
二阶与三阶行列式分析二阶行列式分析:二阶行列式是由两行两列元素组成的方阵。
例如,一个二阶行列式可以表示为:abcd其中a、b、c、d是实数。
二阶行列式的计算方法是将对角线上的元素相乘,然后减去另一条对角线上的元素相乘。
根据这个定义,二阶行列式的值可以表示为:abc d , = ad - bc其中ad表示a和d的乘积,bc表示b和c的乘积。
三阶行列式分析:三阶行列式是由三行三列元素组成的方阵。
例如,一个三阶行列式可以表示为:abcdefghi其中a、b、c、d、e、f、g、h、i是实数。
三阶行列式的计算方法可以通过展开定理来计算。
展开定理指出,三阶行列式可以按照第一行或第一列展开为两个二阶行列式的乘积。
根据展开定理,三阶行列式的值可以表示为:abcdefg h i , = aei + bfg + cdh - ceg - bdi - afh其中aei、bfg、cdh分别表示第一行的元素与其对应的代数余子式的乘积,ceg、bdi、afh分别表示第一列的元素与其对应的代数余子式的乘积。
行列式的应用:行列式在线性代数中起着重要的作用,具有广泛的应用。
以下是几个行列式的应用示例:1.解线性方程组:通过求解行列式的值,可以确定线性方程组的解的排列情况和数量。
2.计算面积和体积:通过行列式的计算,可以求得平面上一组向量所围成的面积,或者三维空间中一组向量所围成的体积。
3.判断向量的线性相关性:使用行列式可以判断一组向量是否线性相关,通过计算行列式的值,若行列式为0则表示向量线性相关,否则线性无关。
4.矩阵的逆、行列式的转置:行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。
总结:二阶行列式可以通过对角线元素的乘积减去反对角线元素的乘积来计算。
三阶行列式可以通过展开定理,将其展开为两个二阶行列式的乘积。
行列式在线性代数中有广泛的应用,包括解线性方程组、计算面积和体积、判断向量的线性相关性等。
行列式的性质可以用于计算矩阵的逆矩阵和行列式的转置。
二阶三阶行列式1.引言1.1 概述二阶行列式和三阶行列式是线性代数中常见的概念。
行列式是一个整数或实数的方阵,它具有很多重要的性质和应用。
二阶行列式是一个2×2的方阵,而三阶行列式是一个3×3的方阵。
在本文中,我们将介绍二阶行列式和三阶行列式的定义以及计算方法,并总结它们的特点和重要性。
在二阶行列式部分,我们将详细介绍二阶行列式的定义和计算方法。
二阶行列式的定义是由其中的四个元素按一定的规则相乘再相减得到的一个数值。
计算二阶行列式可以使用简单的公式,即将对角线上的两个元素相乘再相减。
我们将提供详细的计算示例,并讨论二阶行列式在几何学和线性方程组中的应用。
在三阶行列式部分,我们将进一步介绍三阶行列式的定义和计算方法。
三阶行列式的计算比较复杂,需要按一定的规则进行乘法和加减运算。
我们将解释这些规则,并提供实际的计算例子。
此外,我们还将探讨三阶行列式在向量空间和线性方程组中的应用,以及它们与二阶行列式之间的关系。
通过本文的学习,读者将能够理解二阶行列式和三阶行列式的概念和计算方法。
同时,他们还将认识到行列式在数学和实际应用中的重要性。
了解行列式可以帮助我们解决各种问题,包括求解线性方程组、计算向量的正交性和计算面积和体积等。
行列式是线性代数中的基础知识,对于进一步学习和应用线性代数的内容具有重要的意义。
1.2文章结构1.2 文章结构本文将首先介绍二阶行列式的概念和定义,详细阐述其计算方法。
然后,我们将进一步探讨三阶行列式的定义和计算方法。
在分析和比较二阶行列式与三阶行列式的异同之后,我们将总结这两者的特点和应用。
本文的主要目的是通过对二阶和三阶行列式的研究,帮助读者更好地理解和应用行列式的相关概念和计算方法。
具体来说,本文的内容安排如下:2. 正文2.1 二阶行列式2.1.1 定义在这一部分中,我们将引入二阶行列式的概念,并详细解释其定义。
通过具体的例子,我们将展示如何构建并计算二阶行列式。
二阶三阶行列式计算方法在线性代数中,行列式是一个与矩阵相关的重要概念。
行列式具有许多重要的性质和应用,例如计算矩阵的逆、解线性方程组、计算几何体的体积等。
在本文中,我将介绍二阶和三阶行列式的计算方法。
1.二阶行列式的计算方法二阶行列式指的是一个由2x2矩阵组成的行列式。
一个二阶矩阵可以表示为:abcd二阶行列式的计算方法可以使用下面的公式:det(A) = ,a*d - b*c其中,a、b、c、d分别表示矩阵中的元素。
2.三阶行列式的计算方法三阶行列式指的是一个由3x3矩阵组成的行列式。
一个三阶矩阵可以表示为:abcdefghi三阶行列式的计算方法可以使用下面的公式:det(A) = a*(e*i - h*f) - b*(d*i - g*f) + c*(d*h - g*e)在这个公式中,每个元素与其所在行号和列号有关。
元素a与第一行第一列的乘积乘以一个二阶行列式,这个二阶行列式的元素是除去第一行第一列之后的所有元素。
元素b与第一行第二列的乘积乘以一个二阶行列式,这个二阶行列式的元素是除去第一行第二列之后的所有元素,以此类推。
最后,根据正负规律,将所有乘积相加得到最终的结果。
3.示例计算让我们通过一个具体的示例来计算一个二阶和一个三阶行列式。
a)计算二阶行列式:2345使用二阶行列式的公式,我们可以计算:det(A) = 2*5 - 3*4 = 10 - 12 = -2所以这个二阶行列式的结果是-2b)计算三阶行列式:123456789使用三阶行列式的公式,我们可以计算:det(A) = 1*(5*9 - 8*6) - 2*(4*9 - 7*6) + 3*(4*8 - 7*5)=1*(45-48)-2*(36-42)+3*(32-35)=-3+12-9=0所以这个三阶行列式的结果是0。
通过以上示例,我们可以理解二阶和三阶行列式的计算方法。
对于更高阶的行列式,可以使用类似的方法进行计算,但公式会变得更加复杂。
二阶三阶行列式计算式特点二阶行列式是由两行两列的矩阵所组成的行列式,通常表示为:\[D = \begin{vmatrix}a &b \\c &d \\\end{vmatrix}\]其中,a、b、c、d为实数或变量。
二阶行列式的计算公式为:\[D = ad - bc\]三阶行列式是由三行三列的矩阵所组成的行列式,通常表示为:\[D = \begin{vmatrix}a &b &c \\d &e &f \\g & h & i \\\end{vmatrix}\]其中,a、b、c、d、e、f、g、h、i为实数或变量。
三阶行列式的计算公式为:\[D = aei + bfg + cdh - ceg - afh - bdi\]二阶和三阶行列式的计算式特点如下:1. 二阶行列式计算式特点:二阶行列式的计算式非常简单,只需将左上角元素与右下角元素相乘,再减去右上角元素与左下角元素的乘积。
这是因为二阶行列式实际上表示了一个平行四边形的有向面积,而这个面积可以通过两个相邻边的向量叉乘来计算。
由于二维空间的向量只有两个坐标,所以二阶行列式的计算式只涉及到四个数的运算。
2. 三阶行列式计算式特点:三阶行列式的计算式相对较复杂,涉及到六个数的运算。
这是因为三阶行列式实际上表示了一个平行六面体的有向体积,而这个体积可以通过三个相邻棱的向量混合积来计算。
由于三维空间的向量有三个坐标,所以三阶行列式的计算式涉及到六个数的运算。
在二阶和三阶行列式的计算过程中,可以利用行列式的性质来简化计算。
行列式的性质包括:1. 行列式的值与行列式中的元素位置无关,只与元素的值有关。
这意味着可以通过行列式中的元素交换、相加、相乘等运算来改变行列式的形式,但不会改变行列式的值。
2. 交换行或列的位置会改变行列式的符号。
交换两行或两列,行列式的值取相反数。
3. 行列式中的某一行(或列)乘以一个数,等于用这个数乘以行列式。
二三阶行列式的计算公式行列式是线性代数中的一种基本概念,它是一个方阵的一个标量值,用于表示线性变换对体积的影响。
在实际应用中,求解行列式是非常重要的,因此,对于二三阶行列式的计算公式的掌握显得尤为重要。
一、二阶行列式的计算公式二阶行列式是一种特殊的行列式,它由一个2×2的方阵构成。
其计算公式为:$$begin{vmatrix}a & bc & dend{vmatrix} = ad-bc$$其中,a、b、c、d均为实数。
二阶行列式的计算公式非常简单,只需要将主对角线上的元素乘起来,再将副对角线上的元素乘起来,最后将两个积相减即可。
例如,求解以下二阶行列式:$$begin{vmatrix}1 & 23 & 4end{vmatrix}$$根据公式可得:$$begin{vmatrix}1 & 23 & 4end{vmatrix} = (1times4)-(2times3)=-2$$因此,二阶行列式的计算非常简单,只需要掌握公式即可。
二、三阶行列式的计算公式三阶行列式是一种比较常见的行列式,它由一个3×3的方阵构成。
其计算公式为:$$begin{vmatrix}a &b & cd &e & fg & h & iend{vmatrix} = aei+bfg+cdh-ceg-bdi-afh$$其中,a、b、c、d、e、f、g、h、i均为实数。
三阶行列式的计算公式比较复杂,需要掌握一定的技巧。
一种常用的计算方法是“按行展开法”,即按照第一行的元素展开,将行列式转化为二阶行列式的形式,然后再利用二阶行列式的计算公式进行求解。
例如,求解以下三阶行列式:$$begin{vmatrix}1 &2 & 34 &5 & 67 & 8 & 9end{vmatrix}$$按照第一行的元素展开,有:$$begin{vmatrix}1 &2 & 34 &5 & 67 & 8 & 9end{vmatrix} = 1begin{vmatrix}5 & 68 & 9end{vmatrix} - 2begin{vmatrix}4 & 67 & 9end{vmatrix} + 3begin{vmatrix}4 & 57 & 8end{vmatrix}$$利用二阶行列式的计算公式,可得:$$begin{vmatrix}1 &2 & 34 &5 & 67 & 8 & 9end{vmatrix} =1times(5times9-6times8)-2times(4times9-6times7)+3times(4tim es8-5times7)=-6$$因此,掌握了行列式的计算公式和计算方法,就可以轻松求解二三阶行列式了。
第一章 行列式历史上,行列式的概念是在研究线性方程组的解的过程中产生的.如今,它在数学的许多分支中都有着非常广泛的应用,是一种常用的计算工具.特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具.第一节 二阶与三阶行列式二阶行列式与三阶行列式的内容在中学课程中已经涉及到,本节主要对这些知识进行复习与总结,它们是我们学习和讨论更高阶行列式计算的基础.分布图示★引言★ 二阶行列式 ★ 简例 ★ 二元线性方程组 ★ 例1★ 三阶行列式★ 例2 ★ 例3 ★ 三元线性方程组 ★ 例4★ 内容小结 ★ 课堂练习★ 习题1-1内容要点一、二阶行列式2112221122211211a a a a a a a a -=二、二阶线性方程组⎩⎨⎧=+=+)2()1(22221211212111b x a x a b x a x a三、三阶行列式 333231232221131211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++三阶行列式有6项,每一项均为不同行不同列的三个元素之积再冠于正负号,其运算的规律性可用“对角线法则”或“沙路法则”来表述之。
四、三元线性方程组类似于二元线性方程组的讨论,对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111,bx a x a x a b x a x a x a b x a x a x a 记D =,333231232221131211a a a a a a a a a 1D =,333232322213121a a b a a b a a b2D =,333312322113111a b a a b a a b a 3D =,332312222111211b a a b a a b a a 若系数行列式D 0≠,则该方程组有唯一解:.,,332211DD x DD x DD x ===例题选讲例1 (E01) 解方程组.328322121⎩⎨⎧-=-=+x x x x解 D 2132-=13)2(2⨯--⨯=,7-=1D 2338--=)3(3)2(8-⨯--⨯=,7-=2D 3182-=18)3(2⨯--⨯=.14-=因,07≠-=D故所给方程组有唯一解1x DD 1=77--=,1=2x DD 2=714--=.2=例2 (E02) 计算三阶行列式61504321- 解 =-61504321601⨯⨯)1(52-⨯+043⨯⨯+)1(03-⨯⨯-051⨯⨯-624⨯⨯- 4810--=.58-=例3 (E03) 求解方程.094321112==xx D 解 方程左端 =D 23x x 4+18+12-x 9-22x -,652+-=x x由0652=+-x x 解得2=x 或.3=x例4 (E04) 解三元线性方程组.013222321321321⎪⎩⎪⎨⎧=-+-=-+-=+-x x x x x x x x x解 由于方程组的系数行列式=D 111312121---- =)1(11-⨯⨯)1()3()2(-⨯-⨯-+121⨯⨯+11)1(⨯⨯--1)3(1⨯-⨯-)1(2)2(-⨯⨯--5-=,0≠1D =11311122----,5-=2D =11312121----,10-=3D =011112221---,5-=故所求方程组的解为:,111==DD x ,222==DD x.133==DD x课堂练习1.设,14011a aD = 试给出0>D 的充分必要条件. 2.求一个二次多项式)(x f ,使 .28)3(,3)2(,0)1(=-==f f f。