D1_1二阶与三阶行列式
- 格式:ppt
- 大小:893.00 KB
- 文档页数:32
矩阵论基础1.1⼆阶和三阶⾏列式第⼀节⼆阶和三阶⾏列式在介绍⾏列式概念之前,我们先构造⼀个数学玩具:把4个数放在⼀个正⽅形的四个⾓上,在加上两条竖线,即,规定这个玩具对应于⼀个结果:两个对⾓线上的数的乘积之差。
即例如所在⽅向的对⾓线称为主对⾓线,所在⽅向的对⾓线称为副对⾓线。
定义1 4个数称为⼀个⼆阶⾏列式;所在的⾏称为第⼀⾏,记为(r来源于英⽂row),所在的列称为第⼆列,记为(c来源于英⽂column),因其共有两⾏两列,所以称为⼆阶⾏列式,是第⼆⾏第⼀列的元素。
⼀般地⽤表⽰第i⾏第j列的元素,i是⾏标,j是列标。
可叙述为:⼆阶⾏列式的对应值等于主对⾓线上两元素之积减去的副对⾓线上⼆元素之积所得的差, 这⼀计算法则称为对⾓线法则.此玩具的⽤途在于:求解⽅程组⽤消元法,先消去所在的项,⽅程(2)´a11,⽅程(1)´a21得(3)-(4),得再消去所在的项,⽅程(2)´a12,⽅程(1)´a22得(5)-(6),得我们发现其规律为:若记是⽅程组的系数⾏列式,则是⽤常数项替代D中的第⼀列所得的⾏列式;是⽤常数项替代D中的第⼆列所得的⾏列式。
若D≠0,⽅程组的恰好是:,此规律被称为Cramer定理。
例1 求解⼆元线性⽅程组解:,,,因此 , .同理类推,⽤对⾓线法则可以定义3阶⾏列式如下:其中来⾃三条主对⾓线上三个元素的乘积,前⾯加正号;来⾃三条副对⾓线上三个元素的乘积,前⾯加负号。
例2 计算3阶⾏列式解:D=1×2×2+3×1×1+3×1×(-1)-1×2×3-(-1)×1×1-2×1×3=-7D1=6×2×2+4×1×1+11×1×(-1)-1×2×11-(-1)×1×6-2×1×4=-7D2=1×4×2+3×11×1+3×6×(-1)-1×4×3-(-1)×11×1-2×6×3=-14D3=1×2×11+3×1×6+3×1×4-6×2×3-4×1×1-11×1×3=--21实际上,D,D1,D2,D3来⾃线性⽅程组。
行列式的求解方法行列式是线性代数中的重要概念,它在代数学、几何学以及物理学等领域中都有广泛的应用。
行列式的求解方法有很多,接下来将介绍一些常见的求解方法。
1. 二阶和三阶行列式的求解:对于二阶行列式:$D = \begin{vmatrix} a & b\\ c & d \end{vmatrix} = ad - bc$对于三阶行列式:$D = \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i\end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$这种求解方法适用于二阶和三阶行列式,其实质是按照一定的规律对行列式进行展开计算。
2. 扩展行列式法:对于n阶行列式的求解,可以利用扩展行列式法逐步缩小求解规模。
首先选择行列式中的某一行或者某一列,将其展开并作为公因子,得到n个n-1阶的代数余子式。
然后,对每个n-1阶代数余子式再次进行类似的展开操作,得到n-1个n-2阶的代数余子式。
如此循环递归,直到求得1阶行列式,即可得到n阶行列式的解。
例如,对于4阶行列式:$D = \begin{vmatrix} a & b & c & d\\ e & f & g & h\\ i & j & k & l \\ m & n & o & p \end{vmatrix}$,选择第一行进行展开,得到:$D = a \begin{vmatrix} f & g & h \\ j & k & l \\ n & o & p\end{vmatrix} - b \begin{vmatrix} e & g & h \\ i & k & l \\ m & o& p \end{vmatrix} + c \begin{vmatrix} e & f & h \\ i & j & l \\ m& n & p \end{vmatrix} - d \begin{vmatrix} e & f & g \\ i & j & k\\ m & n & o \end{vmatrix}$然后,对每个3阶代数余子式再次进行展开,最终得到4阶行列式的解。
第一章 行列式历史上,行列式的概念是在研究线性方程组的解的过程中产生的.如今,它在数学的许多分支中都有着非常广泛的应用,是一种常用的计算工具.特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具.第一节 二阶与三阶行列式二阶行列式与三阶行列式的内容在中学课程中已经涉及到,本节主要对这些知识进行复习与总结,它们是我们学习和讨论更高阶行列式计算的基础.分布图示★引言★ 二阶行列式 ★ 简例 ★ 二元线性方程组 ★ 例1★ 三阶行列式★ 例2 ★ 例3 ★ 三元线性方程组 ★ 例4★ 内容小结 ★ 课堂练习★ 习题1-1内容要点一、二阶行列式2112221122211211a a a a a a a a -=二、二阶线性方程组⎩⎨⎧=+=+)2()1(22221211212111b x a x a b x a x a三、三阶行列式 333231232221131211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++三阶行列式有6项,每一项均为不同行不同列的三个元素之积再冠于正负号,其运算的规律性可用“对角线法则”或“沙路法则”来表述之。
四、三元线性方程组类似于二元线性方程组的讨论,对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111,bx a x a x a b x a x a x a b x a x a x a 记D =,333231232221131211a a a a a a a a a 1D =,333232322213121a a b a a b a a b2D =,333312322113111a b a a b a a b a 3D =,332312222111211b a a b a a b a a 若系数行列式D 0≠,则该方程组有唯一解:.,,332211DD x DD x DD x ===例题选讲例1 (E01) 解方程组.328322121⎩⎨⎧-=-=+x x x x解 D 2132-=13)2(2⨯--⨯=,7-=1D 2338--=)3(3)2(8-⨯--⨯=,7-=2D 3182-=18)3(2⨯--⨯=.14-=因,07≠-=D故所给方程组有唯一解1x DD 1=77--=,1=2x DD 2=714--=.2=例2 (E02) 计算三阶行列式61504321- 解 =-61504321601⨯⨯)1(52-⨯+043⨯⨯+)1(03-⨯⨯-051⨯⨯-624⨯⨯- 4810--=.58-=例3 (E03) 求解方程.094321112==xx D 解 方程左端 =D 23x x 4+18+12-x 9-22x -,652+-=x x由0652=+-x x 解得2=x 或.3=x例4 (E04) 解三元线性方程组.013222321321321⎪⎩⎪⎨⎧=-+-=-+-=+-x x x x x x x x x解 由于方程组的系数行列式=D 111312121---- =)1(11-⨯⨯)1()3()2(-⨯-⨯-+121⨯⨯+11)1(⨯⨯--1)3(1⨯-⨯-)1(2)2(-⨯⨯--5-=,0≠1D =11311122----,5-=2D =11312121----,10-=3D =011112221---,5-=故所求方程组的解为:,111==DD x ,222==DD x.133==DD x课堂练习1.设,14011a aD = 试给出0>D 的充分必要条件. 2.求一个二次多项式)(x f ,使 .28)3(,3)2(,0)1(=-==f f f。