湖北省荆州中学2018届高三上学期第三次双周考(11月)数学(理)Word版含解斩
- 格式:doc
- 大小:1004.00 KB
- 文档页数:12
荆州市第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞2. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1 B.3⎛⎝ C.()1,33⎛⎫⎪ ⎪⎝⎭D .( 3. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.4. 在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=()A .B .C .﹣D .﹣5. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为()A. B . C .D .6. 一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 27. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.8. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .2509. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .3110.与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A11.设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(-12.已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+)D .f (x )=sin (2x+)二、填空题13.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .14.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 .15.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .16.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.17.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .18.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.三、解答题19.已知函数f (x )=|2x+1|,g (x )=|x|+a (Ⅰ)当a=0时,解不等式f (x )≥g (x );(Ⅱ)若存在x ∈R ,使得f (x )≤g (x )成立,求实数a 的取值范围.20.已知椭圆G :=1(a >b >0)的离心率为,右焦点为(2,0),斜率为1的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (﹣3,2). (Ⅰ)求椭圆G 的方程; (Ⅱ)求△PAB 的面积.21.已知函数f (x )=4sinxcosx ﹣5sin 2x ﹣cos 2x+3.(Ⅰ)当x ∈[0,]时,求函数f (x )的值域;(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,=2+2cos (A+C ),求f (B )的值.22.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.23.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.24.已知命题p :x 2﹣3x+2>0;命题q :0<x <a .若p 是q 的必要而不充分条件,求实数a 的取值范围.荆州市第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 2. 【答案】C 【解析】1111]试题分析:由直线方程1:L y x =,可得直线的倾斜角为045α=,又因为这两条直线的夹角在0,12π⎛⎫⎪⎝⎭,所以直线2:0L ax y -=的倾斜角的取值范围是03060α<<且045α≠,所以直线的斜率为00tan30tan 60a <<且0tan 45α≠1a <<或1a << C. 考点:直线的倾斜角与斜率. 3. 【答案】D4. 【答案】A【解析】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.5.【答案】B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x值为∴=,其中k∈Z取k=1,得φ=因此,f(x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.6.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B7.【答案】D.第Ⅱ卷(共110分)8.【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.9.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.10.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.11.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数, ,,,在是减函数,所以由得,,即,故选12.【答案】D【解析】解:由图象知函数的最大值为1,即A=1,函数的周期T=4(﹣)=4×=,解得ω=2,即f (x )=2sin (2x+φ),由五点对应法知2×+φ=,解得φ=,故f (x )=sin (2x+), 故选:D二、填空题13.【答案】()0,2x π∃∈,sin 1≥【解析】试题分析:“(0,)2x π∀∈,sin 1x <”的否定是()0,2x π∃∈,sin 1≥考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题.14.【答案】 7+【解析】解:如图所示, 设∠APB=α,∠APC=π﹣α. 在△ABP 与△APC 中,由余弦定理可得:AB 2=AP 2+BP 2﹣2AP •BPcos α,AC 2=AP 2+PC 2﹣2AP •PCcos (π﹣α),∴AB 2+AC 2=2AP 2+,∴42+32=2AP 2+,解得AP=.∴三角形ABP 的周长=7+.故答案为:7+.【点评】本题考查了余弦定理的应用、中线长定理,考查了推理能力与计算能力,属于中档题.15.【答案】 [,4] .【解析】解:由题意知≤log2x ≤2,即log 2≤log 2x ≤log 24,∴≤x ≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f (x )的定义域是[,2],得到≤log 2x ≤2”是关键,考查理解与运算能力,属于中档题.16.【答案】或 【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或. 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.17.【答案】 .【解析】解:∵=1﹣bi ,∴a=(1+i )(1﹣bi )=1+b+(1﹣b )i ,∴,解得b=1,a=2.∴|a ﹣bi|=|2﹣i|=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.18.1【解析】三、解答题19.【答案】【解析】解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥x,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞)(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.20.【答案】【解析】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.21.【答案】【解析】解:(Ⅰ)f(x)=4sinxcosx﹣5sin2x﹣cos2x+3=2sin2x﹣+3=2sin2x+2cos2x=4sin(2x+).∵x∈[0,],∴2x+∈[,],∴f(x)∈[﹣2,4].(Ⅱ)由条件得sin(2A+C)=2sinA+2sinAcos(A+C),∴sinAcos(A+C)+cosAsin(A+C)=2sinA+2sinAcos(A+C),化简得sinC=2sinA,由正弦定理得:c=2a,又b=,由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA,解得:cosA=,故解得:A=,B=,C=,∴f(B)=f()=4sin=2.【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.22.【答案】【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C 的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x ﹣3),… 设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y=(x ﹣3)代入椭圆C 方程,整理得x 2﹣3x ﹣8=0,…由韦达定理得x 1+x 2=3,y 1+y 2=(x 1﹣3)+(x 2﹣3)=(x 1+x 2)﹣=﹣.…由中点坐标公式AB 中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.23.【答案】(1)证明见解析;(2)弦长为定值,直线方程为1x =. 【解析】(2 ,进而得1a =时为定值.试题解析:(1)设直线AB 的方程为2my x =-,由22,4,my x y x =-⎧⎨=⎩得2480y my --=,∴128y y =-, 因此有128y y =-为定值.111](2)设存在直线:x a =满足条件,则AC 的中点112(,)22x y E +,AC =,因此以AC 为直径圆的半径12r AC ===E 点到直线x a =的距离12||2x d a +=-,所以所截弦长为===.当10a -=,即1a =时,弦长为定值2,这时直线方程为1x =.考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题. 24.【答案】【解析】解:对于命题p:x2﹣3x+2>0,解得:x>2或x<1,∴命题p:x>2或x<1,又∵命题q:0<x<a,且p是q的必要而不充分条件,当a≤0时,q:x∈∅,符合题意;当a>0时,要使p是q的必要而不充分条件,需{x|0<x<a}⊊{x|x>2或x<1},∴0<a≤1.综上,取并集可得a∈(﹣∞,1].【点评】本题考查必要条件、充分条件与充要条件的判断方法,考查了一元二次不等式的解法,是基础题.。
湖北省荆州市2018届高三数学上学期第三次双周考(11月)试题理一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数满足,则复数的共轭复数在复平面内对应的点的坐标是()A. B. C. D.2.已知集合,则()A. B. C. D.3. 下列各组函数中,表示同一个函数的是()A. B.C. D.4. 已知平面向量,若∥,则实数()A. B. C. D.5. 命题“”的否定为()A. B.C. D.6. 已知函数,则“”是“函数的最小正周期为”的()A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分又不必要条件7. 已知数列满足,则=()A.0 B. C. D.8. 已知实数,且,则的最小值为()A.4 B.3 C.2 D.19. 已知双曲线的渐近线与抛物线的准线分别交于两点,若抛物线的焦点为,且,则双曲线的离心率为()A. B. C.2 D.10. 已知均为锐角,,则()A. B. C. D.11. 已知三棱锥的一条棱长为,其余棱长均为1,当三棱锥的体积最大时,它的外接球的表面积为()A. B. C. D.12. 已知曲线与恰好存在两条公切线,则实数的取值范围是()A. B. C. D.二、填空题:(本大题共4个小题,每小题5分,共20分.只需要填写演算结果)13.已知函数,则.14.正方形中,、分别是、的中点,若,且.则=.15.已知数列满足,且,则数列的通项公式=.16.已知函数是定义域为的偶函数,当时,, 若关于的方程有且仅有6个不同的实数根,则实数的取值范围是.三、解答题:(本大题共有6个小题,共70分,要求写出详细的演算步骤及解题过程.)17.(本题满分10分)已知函数.(1)求函数的最小正周期及其图像对称轴的方程;(2)在锐角三角形中,、、的对边分别为.已知,求的面积.18.(本题满分12分)已知等差数列的前项和为,且满足.(1)求数列的通项公式;(2)若,求数列的前项和.19.(本题满分12分)如图,直角三角形中,为线段上一点,且,沿边上的中线将折起到的位置.(1)求证:;(2)当平面平面时,求二面角的余弦值.20.(本题满分12分)荆州市政府为促进淡水鱼养殖业的发展,将价格控制在适当的范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为元/千克,政府补贴为元/千克.根据市场调查,当时,淡水鱼的市场日供应量千克与市场日需求量千克近似满足关系;.当市场日供应量与市场日需求量相等时的市场价格称为市场平衡价格.(1)将市场平衡价格表示为政府补贴的函数,并求其定义域;(2)为使市场平衡价格不高于10元/千克,政府补贴至少为每千克多少元?21.(本题满分12分)已知椭圆的上、下两个焦点分别为、,过点与轴垂直的直线交椭圆于、两点,的面积为,椭圆的离心率为.(1)求椭圆的标准方程;(2)已知为坐标原点,直线与轴交于点,与椭圆交于、两个不同的点.若存在实数,使,求实数的取值范围.22.(本小题满分12分)已知函数与.(1)若曲线与曲线恰好相切于点,求实数的值;(2)当时,恒成立,求实数的取值范围;(3)求证:. .高三第三次双周考参考答案及评分标准数学(理科)一、选择题:DBDCA BCADA AD二、填空题:13. 14. 15. 16.三、解答题:17. 解:(1)………………2分的最小正周期为………………3分的图像对称轴的方程为: ………………5分(2)由(1)知:,又A为锐角,………………7分由正弦定理即:………………10分18. 解:(1)设的首项为,公差为,由已知得:………………6分(2)由(1)知:当为偶数时,………………9分当n为奇数时,………………11分………………12分19. 解:(1)略………………6分(2)………………12分20.解:(1),定义域为………………6分(2)由(1):,解得:政府补贴至少为每千克1元. ………………12分21. 解:(1)………………4分(2)设,联立方程组,消去并整理得:依题意:………………6分又共成即,且③………………8分由①②③得:………………10分将代入※得:………………12分22. 解:(1). ………………2分(2)令则,在恒成立的必要条件为. 即,………………5分又当时,,令则,即,在递减,即在恒成立的充分条件为.综上,可得:………………8分(3)设为的前n项和,则要证原不等式,只需证:………………10分由(2)知:时即:(当且仅当时取等号). 令,则即:,即从而原不等式得证………………12分(注:其它证法参照答案酌情给分)。
荆州中学2018届高三年级双周考试卷(13)文科数学一、选择题:1.设全集{|13}{|230}A x x B x x =<<=->,,则A B =IA .3(3)2--,B .3(3)2-,C .3(1)2,D .3(3)2,2.某学校为了了解高一、二、三这个年级之间的学生视力是否存在显著差异,拟从这三个年级按人数比例抽取部分学生进行调查,则最合理的抽样方法是 A .抽签法B .系统抽样法C .分层抽样法D .随机抽样法3.若为实数,且(2i)(2i)4i a a +-+=,则a = A .-1B .0C .1D .24.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125 B .925C .1625D .24255.若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)1x y +-=有且只有一个公共点,则双曲线的离心率为 A 2B 3C .2D .46.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 37.若实数x ,y 满足202080y x y x y -⎧⎪-⎨⎪--⎩≥≥≥,则目标函数321z x y =-+的最小值为A .2B .0C .5D .53-8.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(10)f f f f ++++L 的值等于A 2B 2C 22+D .19.已知函数21()ln 2f x x x=-,则其单调增区间是A .(0,1]B .[0,1]C .(0,+∞)D .(1,+∞)10.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24这24个整数中等可能随机产生.则按程序框图正确编程运行时输 出y 的值为3的概率为 A .12 B .13 C .16D .1811.在△ABC 中,角A ,B ,C 的边分别为a ,b ,c ,已知2cos B =, △ABC 的面积为9,且tan()24A π+=,则边长a 的值为A .3B .6C .4D .212.已知直线30x y +-交椭圆22:163y x M +=于A ,B 两点,若C ,D 为椭圆M 上的两点,四边形ACBD 的对角线CD ⊥AB ,则四边形ACBD 的面积的最大值为 A 43B 86C 26D 83二、填空题:13.已知向量||2,||5==a b ,且a ,b 的夹角为60︒,则2-a b 在a 方向上的投影为 ▲ .14.已知l 为曲线1ln y x x =++在A (1,2)处的切线,若l 与二次曲线2(2)1y ax a x =+++也相切,则a = ▲ .15.函数()4sin cos f x x x =的图象向左平移3π个单位得出函数()g x ,则()8g π= ▲ .16.已知A ,B ,C 是球O 球面上的三点,且AB =AC =3,33BC =,D 为球面上的动点,球心O 到平面ABC 的距离为球半径的一半,当三棱锥D -ABC 体积最大时,其高为 ▲ . 三、解答题17.已知数列{}n a 的前n 项和11()22n n n S a -=--+(n 为正整数).(Ⅰ)令2nn n b a =,求证数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)令1n n n c an+=,12n n T c c c =+++L ,求n T .18.如图1,已知直角梯形ABCD 中,122AB AD CD ===,AB//DC ,AB ⊥AD ,E 为CD 的中点,沿AE 把△DAE 折起到△PAE 的位置(D 折后变为P ),使得PB =2,如图2.(Ⅰ)求证:平面PAE ⊥平面ABCE ; (Ⅱ)求点B 到平面PCE 的距离.19. 如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求3月1日到14日空气质量指数的中位数; (Ⅱ)求此人到达当日空气重度污染的概率;图1 图2(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)20.如图,抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,||CO 为半径作圆,设圆C 与准线l 交于不同的两点M ,N . (Ⅰ)若点C 的纵坐标为2,求||MN ;(Ⅱ)若2||||||AF AM AN =g,求圆C 的半径.21.已知函数()e xf x =,x ∈R .(Ⅰ)求()f x 的反函数的图象上点(1,0)处的切线方程;(Ⅱ)证明:曲线()y f x =与曲线2112y x x =++有唯一公共点.22.【选修4—4 坐标系与参数方程】已知动点P 、Q 都在曲线2cos :(2sin x tC t y t =⎧⎨=⎩为参数)上,对应参数分别为t α=与2t α=(02απ<<),M 为PQ 的中点.(Ⅰ) 求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.23.【选修4—5 不等式选讲】(Ⅰ)当2a =时,求不等式()4|4|f x x --≥的解集;(Ⅱ)已知关于x 的不等式|(2)2()|2f x a f x +-≤的解集为{|12}x x ≤≤,求a 的值.高三数学(文科)参考答案及评分标准(13)一、选择题:1—5 DCBDC 6—10 ADCDC 11—12 AB 二、填空题:13.3214.4 1562-.33 三、解答题:17.解:(Ⅰ)在11()22n n n S a -=--+中,令1n =,可得11112S a a =--+=,即112a =……………………………………………………………………1分当2n ≥时,2111()22n n n S a ---=--+∴1111()2n n n n n n a S S a a ---=-=-++……………………………………2分∴1112()2n n n a a --=+,即11221n n n n a a --=+∵2nn n b a =,∴11n n b b -=+,即当2n ≥时,11n n b b --=又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列…………4分于是1(1)12n n n b n n a =+-==g,∴2n n na =……………………………6分 (Ⅱ)由(Ⅰ)得11(1)()2nn nn c a n n +==+……………………………………7分 ∴23111123()4()(1)()2222n n T n =⨯+⨯+⨯+++L g① 2341111112()3()4()(1)()22222n nT n +=⨯+⨯+⨯+++L g 由①-②得231111111()()()(1)()22222n n n T n +=++++-+L g ……………………9分 11111[1()]334211(1)()122212n n n n n -++-+=+-+=--∴332n nn T +=-…………………………………………………………12分18.解:(Ⅰ)如图,取AE 的中点O ,连接PO ,OB ,BE . 由于在平面图形中,如题图1,连接BD ,BE ,易知四边形ABED 为正方形,∴在立体图形中,△PAE ,△BAE 为等腰直角三角形,∴PO ⊥AE ,OB ⊥AE ,PO =OB∵PB =2,∴222PO OB PB +=,∴PO ⊥OB ………………………………………………………………3分 又AE OB O =I ,∴平面PO ⊥平面ABCE ,∵PO ⊂平面PAE ,∴平面PAE ⊥平面ABCD ……………………6分(Ⅱ)由(Ⅰ)可知,PO ⊥AE ,OB ⊥AE ,PO OB O =I ,故AE ⊥平面POB . ∵PB ⊂平面POB ,∴AE ⊥PB ,又BC//AE ,∴BC ⊥PB . 在Rt △PBC中,PC在△PEC 中,PE =CE =2,∴12PEC S =⨯=V 分设点B 到平面PCE 的距离为d ,由P BCE PEC V V --=三棱锥三棱锥B ,得1222BCE PEC S PO d S ⨯⨯===V V g 分 19.解:(Ⅰ)由题意知,中位数为103.5………………………………………………4分(Ⅱ)设A i 表示事件“此人于3月i 日到达该市”(i =1,2,…,13).根据题意,1()13i P A =,且()i j A A i j =∅≠I . 设B 为事件“此人到达当日空气重度污染”,则58B A A =U .∴58582()()()()13P B P A A P A P A ==+=U ………………………………8分 (Ⅲ)从3月5日开始连续三天的空气质量指数方差最大……………………12分20.解:(Ⅰ)抛物线2:4E y x =的准线l 的方程为1x =-………………………………1分由点C 的纵坐标为2,得点C 的坐标为(1,2)…………………………2分 ∴点C 到准线l 的距离d =2,又||CO =∴||2MN ==……………………………………5分(Ⅱ)设200(,)4y C y ,则圆C 的方程为242220000()()416y y x y y y -+-=+………6分即22200202y x x y y y -+-=.由1x =-,得22002102y y y y -++=.设12(1,),(1,)M y N y --,则222000201244(1)240212y y y y y y ∆⎧=-+=->⎪⎪⎨⎪=+⎪⎩, 由2||||||AF AM AN =g,得12||4y y =……………………………………9分 ∴20142y +=,解得0y =,此时0∆>. 圆心C的坐标为33((,22或,从而233||4CO =,||CO 即圆C……………12分 21.解:(Ⅰ)()f x 的反函数为()ln g x x =,设所求切线的斜率为k . ∵1()g x x'=,∴(1)1k g '==,于是在点(1,0)处的切线方程为1y x =-…………………………4分(Ⅱ)证法一:曲线()e xf x =与曲线2112y x x =++公共点的个数等于函数21()e 12x x x x ϕ=---零点的个数……………………………………6分∵(0)110ϕ=-=,∴()x ϕ存在零点0x =………………………………7分又()e 1x x x ϕ'=--,令()()e 1x h x x x ϕ'==--,则()e 1xh x '=-.当0x <时,()0h x '<,∴()x ϕ'在(,0)-∞上单调递减; 当0x >时,()0h x '>,∴()x ϕ'在(0,)+∞上单调递增,∴()x ϕ'在0x =处有唯一的极小值(0)0ϕ'=……………………10分 即()x ϕ'在R 上的最小值为(0)0ϕ'=. ∴()0x ϕ'≥(当且仅当0x =时等号成立),∴()x ϕ在R 上是单调递增的,∴()x ϕ在R 上有唯一的零点,故曲线()y f x =与曲线2112y x x =++有唯一公共点………………12分证法二:∵e 0x >,21102x x ++>,∴曲线e xy =与曲线2112y x x =++公共点的个数等于曲线2112exx x y ++=与1y =的公共点的个数………………………6分设2112()ex x x x ϕ++=,则(0)1ϕ=,即当0x =时,两曲线有公共点.又22211(1)e (1)e 22()0e ex x x x x x x x x ϕ+-++-'==≤(当且仅当0x =时等号成立),∴()x ϕ在R 上单调递减,∴()x ϕ与1y =有唯一的公共点,故曲线()y f x =与曲线2112y x x =++有唯一公共点…………………12分22.解:(Ⅰ) 依题意有(2cos ,2sin ),(2cos2,2sin 2)P Q αααα…………………………2分 因此(cos cos2,sin sin 2)M αααα++………………………………………3分M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<)5分当απ=时,0d =,故M 的轨迹过坐标原点…………………………10分23.解:(Ⅰ)当2a =时,26,2()|4|2,2426,4x x f x x x x x -+≤⎧⎪+-=<<⎨⎪-≥⎩………………………………1分()4|4|f x x ≥--的解集为{|15}x x x ≤≥或…………………………5分(Ⅱ)记()(2)2()h x f x a f x =+-,则2,0()42,02,a x h x x a x a a x a -≤⎧⎪=-<<⎨⎪≥⎩………………………………………………7分又已知|()|2h x ≤的解集为{|12}x x ≤≤,。
荆州中学高三上学期第四次半月考(11月)理科数学一、选择题:本题共12小题,每小题5分,共60分. (1)若21zi i=-+(i 为虚数单位),复数z 的共轭复数z 在复平面内对应的点在( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 (2)设集合2{20}A x x x =-≥,{12}B x x =<≤,则A B =I ( ) A {2} B {01}x x <≤ C {12}x x <≤ D {12}x x << (3)要得到函数x y 2sin =的图象,只需将函数)32sin(π+=x y 的图象( )A 向左平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向右平移π6个单位(4)设n m l ,,为三条不同的直线,α为一个平面,下列命题中正确的个数是( ) ①若α⊥l ,则l 与α相交; ②若,,,,n l m l n m ⊥⊥⊂⊂αα则α⊥l ; ③若l ||m ,m ||n ,α⊥l ,则α⊥n ; ④若l ||m ,α⊥m ,α⊥n ,则l ||n .A 1B 2C 3D 4(5)在ABC △中,π4A =,BC =“AC =是“π3B =”的( ) A 充分不必要条件 B 必要不充分条件C 充要条件D 既不充分也不必要条件(6)若实数,x y 满足条件01001x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩,则3x y -的最大值为( )A. 6B. 5C. 4D. 3(7)设函数()y f x =可导,()y f x =的图象如图1所示,则导函数()y f x '=的图像可 能为( )(8)已知等比数列{}n a ,且4268016a a x dx +=-⎰,则()84682a a a a ++的值为( )A 216πB 28πC 24πD 2π(9)函数()y f x =为R 上的偶函数,函数()y g x =为R 上的奇函数,()(2)f x g x =+,(0)4f =-,则()g x 可以是( )A π4tan8x B π4sin2x - C π4sin4x D π4sin4x -(10)已知函数()()30f x sinwx coswx w ->=在()0,π上有且只有三个零点,则实数w 的取值范围为( )A ]34,0(B ]37,34( C. ]310,37( D ]313,310((11)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 最大值为( )A 32B 64C 327D 647(12)已知函数)121()(2xx k x e x f x --=,若1=x 是函数)(x f 唯一一个极值点,则实数k 的取值范围为( )A ],(e -∞B )1,(e --∞C }0{]1,(⋃--∞eD },0{]1,(e e⋃--∞二、填空题:本题共4小题,每小题5分,共20分。
荆州市2018届高三年级质量检查(Ⅲ)数学(理工农医类)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填涂在答题卡上.1. 设全集,集合,,则()A. B. C. D.【答案】C【解析】由题意得,∴,∴.选C.2. 若复数是纯虚数,其中是实数,则()A. B. C. D.【答案】B【解析】∴复数是纯虚数,∴,解得,∴,∴.选B.3. 下列命题正确的是()A. 命题“”为假命题,则命题与命题都是假命题;B. 命题“若,则”的逆否命题为真命题;C. “”是“”成立的必要不充分条件;D. 命题“存在,使得”的否定是:“对任意,均有”.【答案】B【解析】选项A中,若“”为假命题,则命题与命题中至少有一个是假命题,故A不正确.选项B中,由于“若,则”为真命题,故其逆否命题为真命题,所以B正确.选项C中,“”是“”成立的充分不必要条件,故C不正确.选项D中,所给命题的否定为:“对任意,均有”,故D正确.故选B.4. 已知随机变量,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()注:,.A. 6038B. 6587C. 7028D. 7539【答案】B【解析】∵随机变量,∴,∴,∴落入阴影部分的点的个数的估计值为个.选B.5. 已知数列满足,且,则()A. -3B. 3C.D.【答案】A【解析】∵,∴,∴数列是等差数列,且公差为2.∵,∴,.∴∴.选A.6. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知“堑堵”的所有顶点都在球的球面上,且,若球的表面积为,则这个三棱柱的体积是()A. B. C. D. 1【答案】C【解析】设球半径为,则,故.由题意得三棱柱的底面为等腰直角三角形,故底面三角形的外接圆的圆心为直角三角形斜边的中点,即如图中的点,所以外接球的球心为的中点.设三棱柱的高为,如图,在中,有,即,解得.所以三棱柱的体积是.选C.7. 偶函数和奇函数的图象如图所示,若关于的方程,的实根个数分别为、,则()A. 16B. 14C. 12D. 10【答案】D【解析】由,得,结合函数的图象可得有6个实根,故;同理,由得或,结合函数的图象可得,有4个实根,故.所以.选D.8. 执行如图所示的程序框图,则输出的结果是()A. 14B. 15C. 16D. 17【答案】C【解析】第一次循环:,不满足;第二次循环:,不满足;第三次循环:,不满足;第一次循环:,不满足;;第十五次循环:,满足;。
湖北省2018届高三上学期11月统测试卷(理科数学)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={x∈R|x2﹣4x<0},集合N={0,4},则M∪N=()A.[0,4] B.[0,4)C.(0,4] D.(0,4)2.设i为虚数单位,复数z=,则z的共轭复数=()A.﹣1﹣3i B.1﹣3i C.﹣1+3i D.1+3i3.已知向量,且,则实数a的值为()A.0 B.2 C.﹣2或1 D.﹣24.设复数z满足(1+i)•z=1﹣2i3(i为虚数单位),则复数z对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限5.原命题:“设a、b、c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个6.图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为A1,A2,…A14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.8 B.9 C.10 D.117.若变量x,y满足约束条件则z=2x﹣y的最小值等于()A. B.﹣2 C. D.28.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系;那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误D.以上三种说法都不正确9.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是()A.B.C.D.10.已知某几何体的三视图如图所示,则该几何体体积为()A.B.C.D.11.实数x,y满足,若z=2x+y的最大值为9,则实数m的值为()A.1 B.2 C.3 D.412.在四棱锥S﹣ABCD中,底面ABCD是平行四边形,M、N分别是SA,BD上的点.①若=,则MN∥面SCD;②若=,则MN∥面SCB;③若面SDA⊥面ABCD,且面SDB⊥面ABCD,则SD⊥面ABCD.其中正确的命题个数是()A.0 B.1 C.2 D.3二.填空题:本大题共4小题,每小题5分.13.(1+2)3(1﹣)5的展开式中x的系数是.14.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:(参考公式==, =﹣,,表示样本均值)则y对x的线性回归方程为.15.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则= .16.已知正数a,b满足a+b=2,则的最小值为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.某重点中学100位学生在市统考中的理科综合分数,以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(Ⅰ)求直方图中x的值;(Ⅱ)求理科综合分数的众数和中位数;(Ⅲ)在理科综合分数为[220,240),[240,260),[260,280),[280,300]的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[220,240)的学生中应抽取多少人?18.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC 的中点.(Ⅰ)证明:ND∥面PAB;(Ⅱ)求AN与面PND所成角的正弦值.19.新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7﹣10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以如表格记录了他们的评分情况.(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记X 表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.20.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?21.如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠ADC=60°,PA=PC,PD⊥PB,AC∩BD=E,二面角P﹣AC﹣B的大小为60°.(1)证明:AC⊥PB;(2)求二面角E﹣PD﹣C的余弦值.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x+m|+|2x+1|.(Ⅰ)当m=﹣1,解不等式f(x)≤3;(Ⅱ)求f(x)的最小值.湖北省2018届高三上学期11月统测数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={x∈R|x2﹣4x<0},集合N={0,4},则M∪N=()A.[0,4] B.[0,4)C.(0,4] D.(0,4)【考点】并集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:集合M={x∈R|x2﹣4x<0}=(0,4),集合N={0,4},则M∪N=[0,4],故选:A.2.设i为虚数单位,复数z=,则z的共轭复数=()A.﹣1﹣3i B.1﹣3i C.﹣1+3i D.1+3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,则z的共轭复数可求.【解答】解:z==,则=﹣1+3i.故选:C.3.已知向量,且,则实数a的值为()A.0 B.2 C.﹣2或1 D.﹣2【考点】数量积判断两个平面向量的垂直关系.【分析】由,可得=0,解得a.【解答】解:∵,∴=a+2(1﹣a)=0,解得a=2.故选:B.4.设复数z满足(1+i)•z=1﹣2i3(i为虚数单位),则复数z对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】化简复数为:a+bi的形式,求出对应点的坐标,即可判断选项.【解答】解:复数z满足(1+i)•z=1﹣2i3,可得z===,复数对应点的坐标()在第一象限.故选:A.5.原命题:“设a、b、c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个【考点】四种命题的真假关系.【分析】∵a>b,∴关键是c是否为0,由等价命题同真同假,只要判断原命题和逆命题即可.【解答】解:原命题:若c=0则不成立,由等价命题同真同假知其逆否命题也为假;逆命题:∵ac2>bc2知c2>0,由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴有2个真命题.故选C6.图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为A1,A2,…A14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.8 B.9 C.10 D.11【考点】程序框图;茎叶图.【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加14次考试成绩超过90分的人数;根据茎叶图的含义可得超过90分的人数为10个,故选:C.7.若变量x,y满足约束条件则z=2x﹣y的最小值等于()A. B.﹣2 C. D.2【考点】简单线性规划.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1)﹣=.故选:A.8.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系;那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误D.以上三种说法都不正确【考点】独立性检验的应用.【分析】由独立性检验知,概率值是指我们认为我的下的结论正确的概率,从而对四个命题判断.【解答】解:若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系;而不是在100个吸烟的人中必有99人患有肺病,故不正确;从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,是指吸烟与患肺病有关系的概率,而不是吸烟人就有99%的可能患有肺病,故不正确;若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误,正确;故选C.9.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案.【解答】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有2×3=6种选择;如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有2×3=6种选择,得到第5球独占一盒的选择有4×(6+6)=48种,第二类,第5球不独占一盒,先放1﹣4号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9×4=36,根据分类计数原理得,不同的方法有36+48=84种.而将五球放到4盒共有×=240种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率P==故选:C10.已知某几何体的三视图如图所示,则该几何体体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】由已知中的三视图,可得该几何体是以侧视图为底面的一个三棱柱,切去两个三棱锥所得的组合体,进而可得体积.【解答】解:由已知中的三视图,可得该几何体是以侧视图为底面的一个三棱柱,切去两个三棱锥所得的组合体,∵侧视图的面积S==8,棱柱的高为5,切去的两个棱锥高均为1,故组合体的体积V=5×8﹣2××8×1=,故选:C.11.实数x,y满足,若z=2x+y的最大值为9,则实数m的值为()A.1 B.2 C.3 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求出最优解,建立方程关系进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最大,此时z最大,此时2x+y=9.由,解得,即B(4,1),∵B在直线y=m上,∴m=1,故选:A12.在四棱锥S﹣ABCD中,底面ABCD是平行四边形,M、N分别是SA,BD上的点.①若=,则MN∥面SCD;②若=,则MN∥面SCB;③若面SDA⊥面ABCD,且面SDB⊥面ABCD,则SD⊥面ABCD.其中正确的命题个数是()A.0 B.1 C.2 D.3【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】在①和②中,过M作MH∥SD,交AD于H,连结HN,由条件能推导出平面MNH∥平面SDC,从而得到MN∥面SCD;在③中,由面SDA⊥面ABCD,且面SDB⊥面ABCD,平面SDA∩平面SDB=SD,得到SD⊥面ABCD.【解答】解:在①中,过M作MH∥SD,交AD于H,连结HN,∵在四棱锥S﹣ABCD中,底面ABCD是平行四边形,M、N分别是SA,BD上的点, =,∴NH∥CD,∵MH∩MN=M,SD∩DC=D,MH,MN⊂平面MNH,SD,CD⊂平面SDC,∴平面MNH∥平面SDC,∵MN⊂平面MNH,∴MN∥面SCD,故①正确;在②中,过M作MH∥SD,交AD于H,连结HN,∵在四棱锥S﹣ABCD中,底面ABCD是平行四边形,M、N分别是SA,BD上的点, =,∴∴NH∥CD,∵MH∩MN=M,SD∩DC=D,MH,MN⊂平面MNH,SD,CD⊂平面SDC,∴平面MNH∥平面SDC,∵MN⊂平面MNH,∴MN∥面SCD,故②正确;在③中,∵面SDA⊥面ABCD,且面SDB⊥面ABCD,平面SDA∩平面SDB=SD,∴SD⊥面ABCD,故③正确.故选:D.二.填空题:本大题共4小题,每小题5分.13.(1+2)3(1﹣)5的展开式中x的系数是 2 .【考点】二项式系数的性质.【分析】把所给的式子按照二项式定理展开,即可求得展开式中x的系数.【解答】解:由于(1+2)3(1﹣)5=(+++)•(++…+),故展开式中x的系数为 1×(﹣)+×4×1=2,故答案为 2.14.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:(参考公式==, =﹣,,表示样本均值)则y对x的线性回归方程为.【考点】线性回归方程.【分析】根据所给的数据计算出x,y的平均数和回归直线的斜率,即可写出回归直线方程.【解答】解:∵176, =176,∴样本组数据的样本中心点是,==, =﹣=88,∴回归直线方程为.故答案为15.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=10 .【考点】向量在几何中的应用.【分析】建立坐标系,利用坐标法,确定A,B,D,P的坐标,求出相应的距离,即可得到结论.【解答】解:建立如图所示的平面直角坐标系,设|CA|=a,|CB|=b,则A(a,0),B(0,b)∵点D是斜边AB的中点,∴,∵点P为线段CD的中点,∴P∴===∴|PA|2+|PB|2==10()=10|PC|2∴=10.故答案为:1016.已知正数a,b满足a+b=2,则的最小值为.【考点】基本不等式.【分析】正数a,b满足a+b=2,则a+1+b+1=4.利用“乘1法”与基本不等式的性质即可得出.【解答】解:正数a,b满足a+b=2,则a+1+b+1=4.则= [(a+1)+(b+1)] =≥==,当且仅当a=,b=.故答案为:.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.某重点中学100位学生在市统考中的理科综合分数,以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(Ⅰ)求直方图中x的值;(Ⅱ)求理科综合分数的众数和中位数;(Ⅲ)在理科综合分数为[220,240),[240,260),[260,280),[280,300]的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[220,240)的学生中应抽取多少人?【考点】频率分布直方图.【分析】(Ⅰ)根据直方图求出x的值即可;(Ⅱ)根据直方图求出众数,设中位数为a,得到关于a的方程,解出即可;(Ⅲ)分别求出[220,240),[240,260),[260,280),[280,300]的用户数,根据分层抽样求出满足条件的概率即可.【解答】解:(Ⅰ)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,∴直方图中x的值为0.007 5.(Ⅱ)理科综合分数的众数是=230,∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴理科综合分数的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a﹣220)=0.5,解得a=224,即中位数为224.(Ⅲ)理科综合分数在[220,240)的学生有0.012 5×20×100=25(位),同理可求理科综合分数为[240,260),[260,280),[280,300]的用户分别有15位、10位、5位,故抽取比为=,∴从理科综合分数在[220,240)的学生中应抽取25×=5人.18.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC 的中点.(Ⅰ)证明:ND∥面PAB;(Ⅱ)求AN与面PND所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)取PB中点M,连结AM,MN,证明:四边形AMND是平行四边形,得出ND∥AM,即可证明ND∥面PAB;(Ⅱ)在面PAD内过A做AF⊥PD于F,则CD⊥AF,又CD∩PD=D,AF⊥面PDC,连接NF,则∠ANF是AN与面PND所成的角,即可求AN与面PND所成角的正弦值.【解答】(Ⅰ)证明:如图,取PB中点M,连结AM,MN.∵MN是△BCP的中位线,∴MN平行且等于BC.依题意得,AD平行且等于BC,则有AD平行且等于MN∴四边形AMND是平行四边形,∴ND∥AM∵ND⊄面PAB,AM⊂面PAB,∴ND∥面PAB(Ⅱ)解:取BC的中点E,则,所以四边形AECD是平行四边形,所以CD∥AE,又因为AB=AC,所以AE⊥BC,所以CD⊥BC,又BC∥AD,所以CD⊥ADPA⊥面ABCD,CD⊂面ABCD,所以PA⊥CD又PA∩AD=A,所以CD⊥面PAD.在面PAD内过A做AF⊥PD于F,则CD⊥AF,又CD∩PD=D,AF⊥面PDC,连接NF,则∠ANF是AN与面PND所成的角.在Rt△ANF中,,,,所以AN与面PND所成角的正弦值为19.新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7﹣10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以如表格记录了他们的评分情况.(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记X 表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)利用互斥事件的概率公式,可得结论;(2)确定变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.表示所抽取3名中有i名新生儿评分不低于9分,至多有1名评分不【解答】解:(1)设A1低于9分记为事件A,则.(2)由表格数据知,从本市年度新生儿中任选1名评分不低于的概率为,则由题意知X 的可能取值为0,1,2,3.;;;.所以X的分布列为由表格得.(或)20.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【考点】简单线性规划的应用.【分析】(1)依题意,每天生产的伞兵的个数为100﹣x﹣y,根据题意即可得出每天的利润;(2)先根据题意列出约束条件,再根据约束条件画出可行域,设W=2x+3y+300,再利用T的几何意义求最值,只需求出直线0=2x+3y过可行域内的点A时,从而得到W值即可.【解答】解:(1)依题意每天生产的伞兵个数为100﹣x﹣y,所以利润W=5x+6y+3=2x+3y+300(x,y∈N).(2)约束条件为整理得目标函数为W=2x+3y+300,如图所示,作出可行域.初始直线l:2x+3y=0,平移初始直线经过点A时,W有最大值.由得最优解为A(50,50),所以W=550(元).max答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550(元)21.如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠ADC=60°,PA=PC,PD⊥PB,AC∩BD=E,二面角P﹣AC﹣B的大小为60°.(1)证明:AC⊥PB;(2)求二面角E﹣PD﹣C的余弦值.【考点】二面角的平面角及求法.【分析】(1)推导出AC⊥PE,AC⊥BD,由此能证明AC⊥PB.(2)推导出CE⊥PD,过E作EH⊥PD于H,连接CH,则PD⊥面CEH,∠CHE是二面角E﹣PD﹣C的平面角.由此能求出二面角E﹣PD﹣C的余弦值.【解答】证明:(1)∵E是AC的中点,PA=PC,∴AC⊥PE,∵底面ABCD是菱形,∴AC⊥BD,又PE∩BD=E,∴AC⊥面PDB,又PB⊂面PDB,∴AC⊥PB.解:(2)由(1)CE⊥面PDB,PD⊂面PDB,∴CE⊥PD,过E作EH⊥PD于H,连接CH,则PD⊥面CEH,又CH⊂面CEH,则PD⊥CH,∴∠CHE是二面角E﹣PD﹣C的平面角.由(1)知∠PEB是二面角P﹣AC﹣B的平面角,所以∠PEB=60°,设AB=a,在Rt△PDB中,,△PBE是等边三角形,,EH是△PBD的中位线,则,,CH==,∴,即二面角E﹣PD﹣C的余弦值为.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)利用极坐标与直角坐标的对于关系即可得出曲线C的方程;对直线l的参数方程消参数可得直线l的普通方程;(2)把直线l的参数方程代入曲线C的直角坐标方程得出关于参数t的一元二次方程,利用参数的几何意义和根与系数的关系计算|PQ|.【解答】解:(1)∵ρ=4cosθ.∴ρ2=4ρcosθ,∵ρ2=x 2+y 2,ρcos θ=x ,∴x 2+y 2=4x ,所以曲线C 的直角坐标方程为(x ﹣2)2+y 2=4,由(t 为参数)消去t 得:.所以直线l 的普通方程为.(2)把代入x 2+y 2=4x 得:t 2﹣3t+5=0.设其两根分别为t 1,t 2,则t 1+t 2=3,t 1t 2=5.所以|PQ|=|t 1﹣t 2|==.[选修4-5:不等式选讲]23.设函数f (x )=|x+m|+|2x+1|. (Ⅰ)当m=﹣1,解不等式f (x )≤3;(Ⅱ)求f (x )的最小值.【考点】函数的最值及其几何意义.【分析】(Ⅰ)当m=﹣1,化简不等式,通过x 的范围,取得绝对值符号,求解不等式f (x )≤3;(Ⅱ)利用绝对值的几何意义求解函数的最值即可.【解答】(本小题满分10分)解:(Ⅰ)当m=﹣1时,不等式f (x )≤3,可化为|x ﹣1|+|2x+1|≤3.当时,﹣x+1﹣2x ﹣1≤3,∴x ≥﹣1,∴;当时,﹣x+1+2x+1≤3,∴x ≤1,∴;当x ≥1时,x ﹣1+2x+1≤3,∴x ≤1,∴x=1;综上所得,﹣1≤x ≤1.(Ⅱ)=,当且仅当时等号成立.又因为,当且仅当时,等号成立.所以,当时,f(x)取得最小值.。
荆州中学2018届高三年级第三次双周考试卷数学(理)一、选择题.1. 已知复数满足,则复数的共轭复数在复平面内对应的点的坐标是()A. B. C. D.【答案】D【解析】由,得,在复平面内对应的点的坐标是,故选D.2. 已知集合,则()A. B. C. D.【答案】B【解析】因为,,所以,故选B.3. 下列各组函数中,表示同一个函数的是()A. B.C. D.【答案】D【解析】对于A,,定义域不相同,不是同一个函数;对于B,定义域不相同,不是同一个函数;对于C, 定义域不相同,不是同一个函数;对于D,,定义域、值域、对应关系都相同,是同一函数,故选D.4. 已知平面向量,若∥,则实数()A. B. C. D.【答案】C【解析】因为平面向量,∥,,解得,故选C.5. 命题“”的否定为()A. B.C. D.【答案】A【解析】由全称命题“”的否定为特称命题“”可知:命题“” 的否定是“”,故选A.6. 已知函数,则“”是“函数的最小正周期为”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】,当时,函数的周期充分性成立,若函数的最小正周期为,则,解得,必要性不成立,故“”是“函数的最小正周期为”的充分不必要条件,故选B.7. 已知数列满足,则=()A. 0B.C.D.【答案】C【解析】,,是周期为的数列,,故选C.8. 已知实数,且,则的最小值为()A. 4B. 3C. 2D. 1【答案】A【解析】试题分析:由,可得,所以,则,因为,,则,当且仅当即时,取得等号,所以,即的最小值是,故选A.考点:1、对数运算性质;2、基本不等式.9. 已知双曲线的渐近线与抛物线的准线分别交于两点,若抛物线的焦点为,且,则双曲线的离心率为()A. B. C. 2 D.【答案】D【解析】∵双曲线,∴双曲线的渐近线方程是y=x又抛物线的准线方程是x=−,故A,B两点的纵坐标分别是y=,,又,∴,即,,故选:D10. 已知均为锐角,,则()A. B. C. D.【答案】A【解析】由题意可知都为钝角,答案为A点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等11. 已知三棱锥的一条棱长为,其余棱长均为1,当三棱锥的体积最大时,它的外接球的表面积为()A. B. C. D.【答案】A【解析】不妨设底面积不变,高最大时体积最大,所以,面ACD与面ABD垂直时体积最大,由于四面体的一条棱长为a,其余棱长均为1,所以球心在两个正三角形的重心的垂线的交点,半径;经过这个四面体所有顶点的球的表面积为:S=;故选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12. 已知曲线与恰好存在两条公切线,则实数的取值范围是()A. B. C. D.【答案】D【解析】的导数的导数为,设与曲线相切的切点为相切的切点为,则有公共切线斜率为,又,即有,即为,即有,则有,即为,恰好存在两条公切线,即有两解,令,则,当时,递减,当时,递增,即有处取得极大值,也为最大值,且为,由恰好存在两条公切线可得与有两个交点,结合函数的图象与单调性可得的范围是,故选D.【方法点睛】本题主要考查导数的几何意义,利用导数研究函数的单调性、函数的零点以及转化与划归思想,数形结合思想的应用,属于难题.解答方程根的问题最常见的方法是转化为函数交点后,利用数形结合解答:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.二、填空题.13. 已知函数,则____________.【答案】【解析】14. 正方形中,、分别是、的中点,若,且.则=_______________.【答案】【解析】试题分析:设正方形边长为,以为坐标原点建立平面直角坐标系,,故,解得.考点:向量运算.15. 已知数列满足,且,则数列的通项公式=_____________.【答案】【解析】∵两边同除以,得:,整理,得:即是以3为首项,1为公差的等差数列.,即.16. 已知函数是定义域为的偶函数,当时,, 若关于的方程有且仅有6个不同的实数根,则实数的取值范围是____________.【答案】【解析】作出的函数图象如图所示:令,则由图象可得:当时,方程只有解;当或时,方程只有解;当时,方程只有解,,或,有解,有解,或,故答案为...................三、解答题.17. 已知函数.(1)求函数的最小正周期及其图像对称轴的方程;(2)在锐角三角形中,、、的对边分别为.已知,求的面积.【答案】(1),对称轴;(2)【解析】试题分析:(1)由正弦、余弦的二倍角公式和两角和的正弦公式化简解析式可得,根据余弦函数的性质即可求最小正周期及对称轴方程;(2)由,又A为锐角,可得,由根据正弦定理可得,从而可得的面积.试题解析:(1),的最小正周期为,的图像对称轴的方程为:(2)由(1)知:,又A为锐角,,由正弦定理即:,.18. 已知等差数列的前项和为,且满足.(1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1);(2)【解析】试题分析: (1)根据已知条件求出的首项和公差,即可求出数列的通项公式.(2)将(1)中求得的代入,利用等差数列和分组并项求和公式即可求出.试题解析:(Ⅰ)因为为等差数列,所以(Ⅱ)∵∴当时,,∴当时,,∴∴点晴:本题考查的是数列中的求通项和数列求和问题.第一问中关键是根据已知条件求出数列的通项公式;第二问中的通项,分成两组求和即可,一组是等比数列,一组是与的奇偶有关,采用分组并项求和即可.19. 如图,直角三角形中,为线段上一点,且,沿边上的中线将折起到的位置.(1)求证:;(2)当平面平面时,求二面角的余弦值.【答案】(1)见解析;(2)【解析】试题分析:(1)利用题意首先证得平面,由线面垂直的判断定理可得.(2)建立空间直角坐标系,利用平面的法向量可求得二面角的余弦值为.试题解析:由已知得,.(Ⅰ)证明:取中点,连接,因为,且,所以,所以. 又因为,为的中点,所以,又,所以平面,又平面,所以.(Ⅱ)因为平面平面,平面平面,,平面,所以平面,所以两两垂直. 以为坐标原点,以、、所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系. 则,,,,,设平面的法向量为,则,不妨令,得. 又平面的一个法向量为,所以,即二面角的余弦值为.20. 荆州市政府为促进淡水鱼养殖业的发展,将价格控制在适当的范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为元/千克,政府补贴为元/千克.根据市场调查,当时,淡水鱼的市场日供应量千克与市场日需求量千克近似满足关系;.当市场日供应量与市场日需求量相等时的市场价格称为市场平衡价格.(1)将市场平衡价格表示为政府补贴的函数,并求其定义域;(2)为使市场平衡价格不高于10元/千克,政府补贴至少为每千克多少元?【答案】(1)(1),定义域为;(2)至少为每千克1元【解析】试题分析:(1)根据市场日供应量与市场日需求量相等,即得到方程,当根的判别式时,方程有解,求出解可得函数关系式,然后,原题以及二次根式自变量取值范围得的另一范围,联立得两个不等式组,求出解集可得自变量取值范围即可;(2)根据价格不高于元,得,解不等式求出的取值范围即可.试题解析:(1)依题设有,化简得,当判别式时,可得,故所求的函数关系式为,函数的定义域为. (2)为使,应有化简得,解得或,由知,从而政府补贴至少为每千克1元.21. 已知椭圆的上、下两个焦点分别为、,过点与轴垂直的直线交椭圆于、两点,的面积为,椭圆的离心率为.(1)求椭圆的标准方程;(2)已知为坐标原点,直线与轴交于点,与椭圆交于、两个不同的点.若存在实数,使,求实数的取值范围.【答案】(1);(2)【解析】(Ⅰ)根据题目条件,由椭圆焦点坐标和对称性计算的面积,建立等式关系,结合关系式,离心率计算公式,问题可得解;(Ⅱ)由题意,可分直线是否过原点,对截距进行分类讨论,再利用椭圆对称性、向量共线、直线与椭圆有交点等性质、条件进行运算即可.试题解析:(Ⅰ)根据已知椭圆的焦距为,当时,,由题意的面积为,由已知得,∴,∴,∴椭圆的标准方程为.(Ⅱ)若,则,由椭圆的对称性得,即,∴能使成立.若,由,得,因为,,共线,所以,解得.设,,由得,由已知得,即,且,,由,得,即,∴,∴,即.当时,不成立,∴,∵,∴,即,∴,解得或.综上所述,的取值范围为.22. 已知函数与.(1)若曲线与曲线恰好相切于点,求实数的值;(2)当时,恒成立,求实数的取值范围;(3)求证:. .【答案】(1);(2);(3)见解析.【解析】试题分析:(1)先求出导函数由,解方程可得;(2)由在恒成立的必要条件为得,再利用导数研究函数的单调性及最值,从而证明时,对任意,总有;(3)由(2)知:时,令,化简可得,再令,多个不等式求和,利用对数的运算法则即可的结论.试题解析:(1)先求出导函数由,解方程可得.(2)令,则,在恒成立的必要条件为.即,又当时,,,令,则,即,在递减,即,在恒成立的充分条件为.综上,可得:(3)设为的前n项和,则,要证原不等式,只需证:,由(2)知:时即:(当且仅当时取等号).令,则,即:,即,令,多个不等式求和,从而原不等式得证【方法点睛】本题主要考查利用导数研究函数的单调性、不等式恒成立及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,命题主要是和导数、绝对值不等式及柯西不等式相结合,导数部分一旦出该类型题往往难度较大,要准确解答首先观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.。