热学(秦允豪编)习题解答第四章-热力学第一定律
- 格式:doc
- 大小:451.00 KB
- 文档页数:15
普通物理学教程《热学》(秦允豪编)习题解答第四章 热力学第一定律4.2.1 解:⎰-=21V V PdVW C T =(1)()RT b v P =-b v RTP -=⎪⎪⎭⎫ ⎝⎛---=--=⎰b v b v dv bv RTW i f v v fi ln(2)⎪⎭⎫ ⎝⎛-=v B RT Pv 1 ⎪⎭⎫ ⎝⎛-=v B RT P 1 ⎪⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛--=⎰i f i f v v v v BRT v v RT dv v B RT W f i11ln 14.2.2 应用(4.3)式⎰-=21V V PdVW 且k PiV PV i ==γγ γγ-=V V P P i i故有:fifv v i i V Vii i V V P dV V V P W γγγγγ----=-=⎰111()()i i f f i f i i V P V P V V V P --=--=--111111γγγγγ (应用了γγf f i i V P V P =)4.4.2 (1)2v ab v RT P --=⎰⎰⎰+--=-=dvv adv b v RT Pdv W 2aV V b V b V RT ⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=121211ln (2)d v a cT u +-=2当C V =时,V V V dt du dT dQ C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= ∴C C V =TC CdT Q T T ∆==⎰214.4.3 水蒸气的凝结热即为定压状况下单位质量物质相变时吸收(或释放)的热量,在等压下此值即为比焓变化,即:()kJh mHl V 4.244459.1000.2545-=--=∆-=∆= (系统放热)4.4.4 铜升温过程,是等压过程()212121221T T T T T T P P bT aT dT bT a dT C Q H ⎪⎭⎫⎝⎛+=+===∆⎰⎰()()2122122T T b T T a -+-=()()122447107.2300120092.5213001200103.2-⋅=-⨯⨯+-⨯⨯=mol J4.4.515.46190846823866921291542321223-⋅-=⎪⎭⎫⎝⎛⨯+⨯--=+-=mol J h h h Q H N NH P4.4.6 在定压情况下,21molH 和221molO 化合生成mol 1水时吸收的热量为 1510858.2-⋅⨯-=∆=mol J H Q (系统放热Q Q -=')每产生一个水分子有两个电子自阴极到阳极,生成mol 1水有A N 2电子到阳极。
普通物理学教程《热学》 (秦允豪编)习题解答第四章 热力学第一定律V24.2.1 解:WV1PdVT CRT P(1) P v bRT vbWvvi fRT v bdv lnv fvibbB Pv RT 1 (2)vPRT 1B vWvvB11 ffRT 1dv RT lnBRTvvvvviifiV24.2.2 应用( 4.3)式WV1P d V且PVPiVkiPP V i i V故有:VfWVi1 P i V VdV P VViii11vfvi11 1P V VViifi11 1 P fVfP Vii(应用了 P i V iP f V f )4.4.2 (1)PRT vba 2vWPdvRT vbdv a 2 vdv V2b 1 1RT lnaVbVV121u cTa 2 vd当VC时,C VdQdT Vdu dt(2)VT2∴C CV QT1C d T C T4.4.3 水蒸气的凝结热即为定压状况下单位质量物质相变时吸收(或释放)的热量,在等压下此值即为比焓变化,即:l HV h 2545 .0 100 .59 2444 .4 m kJ(系统放热)4.4.4 铜升温过程,是等压过程T2H QT T12 2P C dT a bT dT aT bTPT T21 12T1a T2 T1b2T 222T114 2 22.310 1200 300 5. 92 1200 300212. 47107 J mol4.4.5Q hP NH1 3 1 33 h h 29154 8669 8468 46190 .5 J mol2 2N H2 2 2 214.4.6 在定压情况下,1molH 2 和12molO2化合生成1mol 水时吸收的热量为5 1Q (系统放热Q ' Q )H 2 .858 10 J mol每产生一个水分子有两个电子自阴极到阳极,生成 1 m ol 水有2 N A 电子到阳极。
总电量为q 19 232 (q 2N e )1 .60 10 6 .02 10 CA两极间电压为, A q19 23A 1 .229 2 1 .60 10 6 .02 1082.84%5Q' 2. 858 104.4.7 设 1 m ol 固体状态方程为:v v aT bP0 ,内能表示为:u CT aPT ,a 均为常数。
热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。
1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。
( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。
( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。
( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。
( )5. 稳定态单质的∆f H(800 K) = 0。
( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。
(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。
2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。
( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。
3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。
4. 在隔离系统内:( )。
( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。
5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。
( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。
6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。
( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。
7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。
第四章热力学第一定律(题号有所不同)5-1.0.020Kg的氦气温度由升为,若在升温过程中:(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量,试分别求出气体内能的改变,吸收的热量,外界对气体所作的功,设氦气可看作理想气体,且,解:理想气体内能是温度的单值函数,一过程中气体温度的改变相同,所以内能的改变也相同,为:热量和功因过程而异,分别求之如下:(1)等容过程:V=常量A=0由热力学第一定律,(2)等压过程:由热力学第一定律,负号表示气体对外作功,(3)绝热过程Q=0由热力学第一定律5-2.分别通过下列过程把标准状态下的0.014Kg氮气压缩为原体积的一半;(1)等温过程;(2)绝热过程;(3)等压过程,试分别求出在这些过程中气体内能的改变,传递的热量和外界对气体所作的功,设氮气可看作理想气体,且,解:把上述三过程分别表示在P-V图上,(1)等温过程理想气体内能是温度的单值函数,过程中温度不变,故由热一、负号表示系统向外界放热(2)绝热过程由或得由热力学第一定律另外,也可以由及先求得A(3)等压过程,有或而所以===由热力学第一定律,也可以由求之另外,由计算结果可见,等压压缩过程,外界作功,系统放热,内能减少,数量关系为,系统放的热等于其内能的减少和外界作的功。
5-3 在标准状态下的0.016Kg的氧气,分别经过下列过程从外界吸收了80cal的热量。
(1)若为等温过程,求终态体积。
(2)若为等容过程,求终态压强。
(3)若为等压过程,求气体内能的变化。
设氧气可看作理想气体,且解:(1)等温过程则故(2)等容过程(3)等压过程5-4 为确定多方过程方程中的指数n,通常取为纵坐标,为横坐标作图。
试讨论在这种图中多方过程曲线的形状,并说明如何确定n。
解:将两边取对数或比较知在本题图中多方过程曲线的形状为一直线,如图所示。
直线的斜率为可由直线的斜率求n。
或即n可由两截距之比求出。
5-5 室温下一定量理想气体氧的体积为,压强为。
热力学第一定律课后习题一、是非题下列各题中的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”。
1.在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。
( )2. d U = nC V,m d T这个公式对一定量的理想气体的任何pVT过程均适用。
( )3. 一个系统从始态到终态,只有进行可逆过程才有熵变。
( )4. 25℃时H2(g)的标准摩尔燃烧焓等于25℃时H2O(g)的标准摩尔生成焓。
( )5. 稳定态单质的∆f H(800 K) = 0。
( )二、选择题选择正确答案的编号,填在各题后的括号内:1. 理想气体定温自由膨胀过程为:()。
(A)Q > 0;(B)∆U < 0;(C)W <0;(D)∆H = 0。
2. 对封闭系统来说,当过程的始态和终态确定后,下列各项中没有确定的值的是:( )。
( A ) Q;( B ) Q+W;(C ) W( Q = 0 );( D ) Q( W = 0 )。
3. pVγ = 常数(γ = C p,m/C V,m)适用的条件是:( )(A)绝热过程;( B)理想气体绝热过程;( C )理想气体绝热可逆过程;(D)绝热可逆过程。
4. 在隔离系统内:( )。
( A ) 热力学能守恒,焓守恒;( B ) 热力学能不一定守恒,焓守恒;(C ) 热力学能守恒,焓不一定守恒;( D) 热力学能、焓均不一定守恒。
5. 从同一始态出发,理想气体经可逆与不可逆两种绝热过程:( )。
( A )可以到达同一终态;( B )不可能到达同一终态;( C )可以到达同一终态,但给环境留下不同影响。
6. 当理想气体反抗一定的压力作绝热膨胀时,则:( )。
( A )焓总是不变;(B )热力学能总是增加;( C )焓总是增加;(D )热力学能总是减少。
7. 已知反应H2(g) +12O2(g) ==== H2O(g)的标准摩尔反应焓为∆r H(T),下列说法中不正确的是:()。
第四章 热力学第一定律 基本要求一、 可逆和不可逆过程 (1)准静态过程(2)理解什么是可逆过程,什么是不可逆过程.知道只有无耗散的准静态过程才是可逆过程。
二、 功和热量 (1)明确功是在力学相互作用过程中能量转移,热量是在热学相互作用过程中的能量的转移,它们都是过程量,它们都是过程量。
知道“作功”是通过物体宏观位移来完成;而“热传递”是通过分子之间的相互作用来完成。
(2)知道功有正负,熟练掌握从体积膨胀功微分表达式pdV W d -=出发计算体积膨胀功。
从几何上理解功的大小等于p-V 图上热力学过程曲线下面的面积。
三、热力学第一定律(1)知道能量守恒与转化定律应用到热学中就是热力学第一定律。
明确热力学第一定律是把内能、功和热量这三个具有能量量纲的物理量结合在一个方程中:即 W Q U +=∆; (2)一微小过程中热力学第一定律表示为:W d Q d dU +=;对于准静态过程热力学第一定律表示为:pdV Q d dU -=(3)内能是态函数,内能一般应是温度和体积的函数。
内能应当包含分子的热运动动能和分子之间的相互作用势能,也应包括分子内部的能量;在热学中的内能一般不包括系统做整体运动的机械能。
四、热容和焓(1)知道热容的定义、热容是过程量、热容与物体的量有关。
(2)知道焓的定义pV U H +=;知道焓的物理意义。
五、热力学第一定律对理想气体的应用(1)知道焦耳定律;即理想气体的内能仅是温度的函数;知道理想气体的焓也只是温度的函数。
内能和焓的微分可分别表示为:dT C dU m V ,ν=;dT C dH m p ,ν=;这两个公式适用于理想气体任何过程。
(2)理想气体的准静态过程的热力学第一定律可表示为pdV dT C dQ m V +=,ν;利用上式可得迈耶公式:R C C m V m p =-,,ν;(3)会熟练利用热力学第一定律处理一些常见热力学过程。
(4)会推导准静态绝热过程方程,熟记并会熟练利用绝热过程方程,同时应知道绝热过程方程的适用条件。
普通物理学教程《热学》(秦允豪编)
习题解答
第四章 热力学第一定律
4.2.1 解: ⎰-=21V V PdV W C T =
(1)()RT b v P =-
b v RT P -= ⎪⎪⎭⎫ ⎝⎛---=--=⎰b v b v dv b v RT W i f v v f i ln
(2)
⎪⎭⎫ ⎝⎛-=v B RT Pv 1 ⎪⎭⎫ ⎝⎛-=v B RT P 1 ⎪⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛--=⎰
i f i f v v v v BRT v v RT dv v B RT W f i 11ln 1
4.2.2 应用(4.3)式 ⎰-=21V V PdV W 且
k PiV PV i ==γγ γγ-=V V P P i i 故有:f
i f v v i i V Vi i i V V P dV V V P W γ
γ
γγγ----=-=⎰
111
()
()i i f f i f i i V P V P V V V P --=--=--111
111γγγγγ (应用了γγf f i i V P V P =)
4.4.2 (1)
2v a b v RT P --= ⎰⎰⎰+--=-=dv v a dv b v RT Pdv W 2 a
V V b V b V RT ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=121211ln (2)d v a cT u +-=2当C V =时,
V V V dt du dT dQ C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= ∴C C V = T C CdT Q T T ∆==⎰21
4.4.3 水蒸气的凝结热即为定压状况下单位质量物质相变时吸收(或释放)的热量,在等压下此值即为比焓变化,即:
()kJ h m H l V 4.244459.1000.2545-=--=∆-=∆= (系统放热)
4.4.4 铜升温过程,是等压过程
()212121221T T T T T T P P bT aT dT bT a dT C Q H ⎪⎭⎫ ⎝⎛+=+===∆⎰⎰ ()()
2122122T T b T T a -+-= ()()1
22447107.2300120092.5213001200103.2-⋅=-⨯⨯+
-⨯⨯=mol J
4.4.5 1
5.46190846823866921291542321223-⋅-=⎪⎭⎫ ⎝⎛⨯+⨯--=+-
=mol J h h h Q H N NH P
4.4.6 在定压情况下,21molH 和221molO 化合生成mol 1水时吸收的热量为
1510858.2-⋅⨯-=∆=mol J H Q (系统放热Q Q -=') 每产生一个水分子有两个电子自阴极到阳极,生成mol 1水有A N 2电子到阳极。
总电量为C q 23191002.61060.12⨯⨯⨯⨯=- (e N q A 2=) 两极间电压为ε,q A ε=
%84.8210858.21002.61060.12229.1'52319≈⨯⨯⨯⨯⨯⨯==-Q A η
4.4.7 设mol 1固体状态方程为:bP aT v v ++=0,内能表示为:aPT CT u -=,0,,,v C b a 均为常数。
求:(1)()h mol (2)V P C molC ,
解:(1)由摩尔焓定义()()bP aT v P aPT CT Pv u h +++-=+=0
20bP Pv CT h ++=
(2) a )
P P T H C ⎪⎭⎫ ⎝⎛∂∂=' P P T h C ⎪⎭⎫ ⎝⎛∂∂=γ' P P T h C ⎪⎭⎫ ⎝⎛∂∂= ∴ ()C P bP Pv CT T C P =++∂∂=20
b )
V V T u C ⎪⎭⎫ ⎝⎛∂∂= ()aT v v b P --=01 ()T aT v v b a CT u ---=0
()()[]T b a v b a v b a C aT v v T a b a C T u C V V 2002++-=--+--=⎪⎭⎫ ⎝⎛∂∂= (或) ()[]aP T b a C bP T a b a C -+=+--=2。