第一章热力学第一定律解析
- 格式:pptx
- 大小:6.90 MB
- 文档页数:187
第一章热力学第一定律练习参考答案1. 一隔板将一刚性绝热容器分成左右两侧,左室气体的压力大于右室气体的压力。
现将隔板抽去,左、右气体的压力达到平衡。
若以全部气体作为体系,则ΔU、Q、W为正?为负?或为零?解:∵U=02. 试证明1mol理想气体在恒后下升温1K时,气体与环境交换的功等于摩尔气体常数R 。
解: 恒压下,W= p外ΔV= p外p TnR∆=R(p外= p,n=1mol,ΔT=1 )3. 已知冰和水的密度分别为0.92×103kg•m-3和1.0×103 kg•m-3,现有1mol 的水发生如下变化:(1) 在100℃、101.325kPa下蒸发为水蒸气,且水蒸气可视为理想气体;(2) 在0℃、101.325kPa下变为冰。
试求上述过程体系所作的体积功。
解: 恒压、相变过程,(1)W= p外(V2 –V1) =101.325×103×⎪⎭⎫⎝⎛⨯⨯-⨯⨯⨯33100.1018.0110325.101373314.81=3100 ( J ) J=Pa*m^3(2) W= p外(V2 –V1) =101.325×103×⎪⎭⎫⎝⎛⨯⨯-⨯⨯33100.1018.011092.0018.01=0.16 ( J )4. 若一封闭体系从某一始态变化到某一终态。
(1) Q、W、Q-W、ΔU是否已完全确定;(2) 若在绝热条件下,使体系从某一始态变化到某一终态,则(1)中的各量是否已完全确定?为什么?解:(1)Q-W、ΔU完全确定。
( Q-W=ΔU;Q、W与过程有关)(2) Q、W、Q-W、ΔU完全确定。
(Q=0,W = -ΔU)5. 1mol理想气体从100℃373、0.025m3经下述四个过程变为100℃、0.1m3:(1) 恒温可逆膨胀; (2) 向真空膨胀;(3) 恒外压为终态压力下膨胀;(4) 恒温下先以恒外压等于0.05m 3的压力膨胀至0.05m 3,再以恒外压等于终态压力下膨胀至0.1m 3。
物理化学(讲稿)第一章热力学第一定律1.1热力学基本概念(Basic concepts of thermodynamics)1.1.1系统与环境(system and surroundings)系统:被划出来作为研究对象的这部分物体或空间。
环境:系统以外的其它部分。
实际上环境通常是指与系统有相互影响的有限部分。
系统可大可小,大到一座电弧炉及其几十吨钢液与炉渣,小到一个烧杯内盛的少量水,一个系统最少包含一种物质,多者可由几种物质来组成。
例如,炼钢过程中当钢水为系统时,与其有关的炉衬、炉渣及炉气则为环境。
假若研究脱硫、脱磷反应,因为这些反应发生在钢、渣两相界面处,可以把钢液与炉渣视为系统,而与系统有关的炉衬和炉气等则成为环境。
系统与环境间可以存在真实界面,也可以不存在界面。
例如,钢瓶中的氧气为系统,则钢瓶为环境,钢瓶内壁就是一个真实的界面;当研究空气中的氧气时,则空气中的其它气体为环境,此时则不存在界面。
所以不能以有无界面来划分系统与环境。
1)敞开系统:与环境之间既有物质交换,也有能量的传递的系统,称为敞开系统(或开放系统)。
例如,一个盛有热水的玻璃杯,敞开放置,将会向空气中挥发水蒸气,同时散发热量。
(2)封闭系统:与环境之间只有能量传递而没有物质交换的系统,称为封闭系统。
例如,将上例的玻璃杯加盖后,就成为一个封闭系统。
在封闭系统内,可以发生化学变化和由此引起成分变化,只要不从环境引入或向环境输出物质即可。
物理化学上常常讨论这种系统。
冶金过程常把冶金炉(如电炉、高炉、转炉)等看作一个封闭系统,忽略挥发掉的很少量物质。
(3)隔离系统:与环境之间既无物质交换,也无能量传递的系统,称为隔离系统(或孤立系统);例如,把盛有热水的玻璃杯盖起来,并把它放在一个绝热箱内,把整个绝热箱内的所有物质(水杯和空气)作为一个新系统,那么这个新系统就成为隔离系统。
因为这个系统与环境之间既没有物质交换,也没有能量交换。
1.1.2 系统性质、状态和状态函数广度性质(容量性质) (extensive pro-perty): 与系统的物质的量成正比,如体积、质量、熵等。
热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。
封闭系统:与环境只有能量交换而无物质交换的系统。
(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。
2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。
根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。
广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。
强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。
注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。
二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。
它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。
或者说dU与过程无关而δQ和δW却与过程有关。
这里的W既包括体积功也包括非体积功。
以上两个式子便是热力学第一定律的数学表达式。
它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。
三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。
将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。
当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。
热力学第一定律热力学第一定律是热力学的基本原理之一,也被称为能量守恒定律。
它描述了能量的转化和守恒,对于揭示物质的能量变化和热力学性质具有重要的意义。
本文将深入探讨热力学第一定律的概念、原理和应用。
热力学第一定律的概念热力学第一定律是由英国物理学家焦耳在19世纪提出的。
它可以简洁地表述为能量守恒定律,即能量既不能被创造也不能被摧毁,只能在不同形式之间转化。
这意味着一个封闭系统中的能量总量是恒定的,能量既不能消失也不能产生。
当一个系统经历能量的转化时,其总能量保持不变,只是能量的形式和分布发生改变。
热力学第一定律的原理热力学第一定律的原理可以通过以下公式表示:ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外做的功。
这个公式表明,系统内部能量的变化等于系统吸收的热量与系统对外做的功之间的差值。
当系统吸热时,ΔU为正,系统内部能量增加;当系统放热时,ΔU为负,系统内部能量减少;当系统对外做功时,ΔU 为负,系统内部能量减少;当系统由外界做功时,ΔU为正,系统内部能量增加。
热力学第一定律的应用热力学第一定律在工程和科学领域有着广泛的应用。
下面将介绍热力学第一定律的几个重要应用。
1. 热机效率计算热力学第一定律在热机效率计算中起着重要的作用。
热机的效率是指能够转化为有效功的热量与燃料能量之间的比例。
通过热力学第一定律的应用,我们可以计算出热机的效率,从而评估其性能。
2. 平衡热量计算在热平衡过程中,热力学第一定律可以用于计算平衡热量。
平衡热量是指系统从一个状态到另一个状态的过程中吸收或释放的热量。
通过应用热力学第一定律,我们可以计算系统在不同温度下的平衡热量,并进一步了解能量转化过程。
3. 定常流动计算在工程领域中,很多设备和系统都涉及流体的流动。
热力学第一定律可以用于定常流动过程的计算。
这种定常流动的例子包括空调系统、燃料电池、蒸汽涡轮等。
通过应用热力学第一定律,我们可以计算能量损失和效率,从而优化系统性能。
第一章热力学第一定律本章主要公式及其使用条件一、热力学第一定律W Q U +∆= W Q dU δδ+=热力学中规定体系吸热为正值,体系放热为负值;体系对环境作功为负值,环境对体系作功为正值。
功分为体积功和非体积功。
二、体积功的计算体积功:在一定的环境压力下,体系的体积发生改变而与环境交换的能量。
体积功公式⎰⋅-=dV p W 外 1 气体向真空膨胀:W =0 2气体在恒压过程:)(12 21V V p dV p W V V --=-=⎰外外3理想气体等温可逆过程:2112ln lnp p nRT V V nRT W -=-= 4理想气体绝热可逆过程:)(12,T T nC W U m V -=∆=理想气体绝热可逆过程中的p ,V ,T 可利用下面两式计算求解1212,ln ln V V R T T C m V -=21,12,ln lnV V C p p C m p m V =三、热的计算热:体系与环境之间由于存在温度差而引起的能量传递形式。
1. 定容热与定压热及两者关系定容热:只做体积功的封闭体系发生定容变化时, U Q V ∆= 定压热:只做体积功的封闭体系定压下发生变化, Q p = ΔH定容反应热Q V 与定压反应热Q p 的关系:V p Q Q V p ∆+= nRT U H ∆+∆=∆n ∆为产物与反应物中气体物质的量之差。
或者∑+=RT g Q Q m V m p )(,,ν ∑+∆=∆RT g U Hm m)(ν式中∑)(g ν为进行1mol 反应进度时,化学反应式中气态物质计量系数的代数和。
2.热容 1.热容的定义式dTQ C δ=dT Q C VV δ=dT Q C pp δ=n CC VmV =,n C C p m p =, C V ,C p 是广度性质的状态函数,C V ,m ,C p,m 是强度性质的状态函数。
2.理想气体的热容对于理想气体 C p ,m - C V ,m =R 单原子理想气体 C V ,m = 23R ;C p ,m = 25R 双原子理想气体 C V ,m =25R ;C p ,m = 27R 多原子理想气体: C V ,m = 3R ;C p ,m = 4R通常温度下,理想气体的C V ,m 和C p,m 均可视为常数。
第一章 热力学第一定律核心内容:能量守恒 ΔU=Q+W主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 的计算一、内容提要1.热力学第一定律与状态函数(1)热力学第一定律: ΔU=Q+W (封闭系统) 用途:可由ΔU ,Q 和W 中的任意两个量求第三个量。
(2)关于状态函数(M )状态函数:p 、V 、T 、U 、H 、S 、A 、G ……的共性: ①系统的状态一定,所有状态函数都有定值;②系统的状态函数变化值只与始终态有关,而与变化的途径无关。
用途:在计算一定始终态间的某状态函数增量时,为了简化问题,可以撇开实际的复杂过程,设计简单的或利用已知数据较多的过程进行计算。
ΔM (实)=ΔM (设)。
这种方法称为热力学的状态函数法。
③对于循环过程,系统的状态函数变化值等于零,即ΔM =0。
此外,对于状态函数还有如下关系:对于组成不变的单相封闭系统,任一状态函数M 都是其他任意两个独立自变量(状态函数)x 、y 的单值函数,表示为M=M(x 、y),则注意:因为W 和Q 为途径函数,所以Q 和W 的计算必须依照实际过程进行。
⎰-=21V V a m bdV p W ,其中p amb 为环境压力。
Q 由热容计算或由热力学第一定律求得。
dy y M dx x M dM xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=)(1循环关系式-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂xM y M y y x x M )(22尤拉关系式xy My x M ∂∂∂=∂∂∂1(p 1,V 1,T 1) (p'1,V 1,T 2) 2(p 2,V 2,T 2) (p 1,V'1,T 2) VT 将热力学第一定律应用于恒容或恒压过程,在非体积功为零(即w'=0)的情况下有:Q V =ΔU ,Q p =ΔH (H 的定义:H=U+pV )。
此时,计算Q v 、Q p 转化为计算ΔU 、ΔH ,由于U 、H 的状态函数性质,可以利用上面提到的状态函数法进行计算。
1.1 热力学第一定律1.1.1 热力学的研究对象1.热力学:研究能量相互转换过程中所遵循的规律的科学2.化学热力学:用热力学的基本原理来研究化学现象以及和化学有关的物理现象的科学3.研究的内容:研究化学变化的方向和限度。
4.热力学方法:研究对象是由大量质点(原子、分子、离子等)构成的宏观物质体系,所得结论是大量质点集体的平均行为,具有统计意义。
5.局限性:只能告诉我们在某种条件下,变化能否自动发生,发生后进行到什么程度,但不能告诉我们变化所需的时间以及具体的机理———可能性1.1.2 基本概念1.1.2.1 体系与环境1.体系: 所研究的对象。
(物系或系统)2.环境:体系以外并与体系密切相关的部分。
3. 体系分类:敞开体系: 体系与环境之间既有物质交换又有能量交换() 封闭体系: 体系与环境之间没有物质交换只有能量交换() 孤立体系: 体系与环境之间没有物质交换没有能量交换 ()1.1.2.2 状态与状态函数1. 状态:体系的物理性质和化学性质的综合表现状态函数:描述体系状态的性质注:(1)体系与环境的划分不绝对 (2)体系与环境的界面可以是实际存在的,也可以是虚拟的2. 状态函数的特点:A.状态一定,值一定;反之亦然B.异途同归,值变相等,周而复始,数值还原。
C.状态函数的微小变化是全微分,并且可积分D.状态函数代数运算的结果仍然是状态函数,如ρ=m/VE.状态函数之间存在着相互联系,如对于一定量的理想气体P、V、T之间存在下列关系PV=nRT说明:①定量纯物质均相体系或组成不变的多组分均相体系:只需两个独立改变的状态函数就能确定体系的状态②组成可变的多组分均相体系:除两个独立改变的状态函数之外,还需各组分的物质的量3. 状态函数的分类:根据状态函数与体系物质的量的关系,状态函数可以分为两类:广度性质:其数值与体系中物质的量成正比,具有加和性。
整个体系的该广度性质的数值,是组成体系的各部分该性质数值的总和强度性质:其数值与体系中物质的量无关,没有加和性。