第一章热力学第一定律
- 格式:ppt
- 大小:909.00 KB
- 文档页数:12
经验 总结 总结归纳提高 引出或定义出 解决 的 能量效应(功与热) 过程的方向与限度 即有关能量守恒 和物质平衡的规律 物质系统的状态变化 第一章 热力学第一定律 §1.1 热力学基本概念1.1.1 热力学的理论基础和研究方法1、热力学理论基础热力学是建立在大量科学实验基础上的宏观理论,是研究各种形式的能量相互转化的规律,由此得出各种自发变化、自发进行的方向、限度以及外界条件的影响等。
⇨ 热力学四大定律:热力学第一定律——Mayer&Joule :能量守恒,解决过程的能量衡算问题(功、热、热力学能等);热力学第二定律——Carnot&Clousius&Kelvin :过程进行的方向判据; 热力学第三定律——Nernst&Planck&Gibson :解决物质熵的计算;热力学第零定律——热平衡定律:热平衡原理T 1=T 2,T 2=T 3,则T 1= T 3。
2、热力学方法——状态函数法⇨ 热力学方法的特点: ①只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(p 、V 、T etc ) ②只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。
⇨ 局限性:不知道反应的机理、速率和微观性质。
只讲可能性,不讲现实性。
3、热力学研究内容热力学研究宏观物质在各种条件下的平衡行为:如能量平衡,化学平衡,相平衡等,以及各种条件对平衡的影响,所以热力学研究是从能量平衡角度对物质变化的规律和条件得出正确的结论。
热力学只能解决在某条件下反应进行的可能性,它的结论具有较高的普遍性和可靠性,至于如何将可能性变为现实性,还需要动力学方面知识的配合。
1.1.2 热力学的基本概念1、系统与环境⇨ 系统(System ):热力学研究的对象(微粒组成的宏观集合体)。
在科学研究时必须先确定研究对象,把一部分物质与其余部分分开,这种分离可以是实际的,也可以是想象的。
第一章热力学第一定律本章主要内容1.1热力学概论1.2热力学第一定律1.3 可逆过程和最大功1.4 焓1.5 热容1.6 热力学第一定律对理想气体的应用1.7实际气体1.8热化学1.9化学反应热效应的求算方法1.10反应热与温度的关系——基尔霍夫定律§1.1热力学概论1.1.1热力学的研究对象(1)研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律;(2)研究各种物理变化和化学变化过程中所发生的能量效应;(3)研究化学变化的方向和限度。
1.1.2 热力学的方法和局限性热力学方法:热力学在解决问题是使用严格的数理逻辑推理方法,其研究对象是大量质点的集合体,所观察的是宏观系统的平均行为,并不考虑个别分子或质点,所得结论具有统计意义。
优点:只须知道宏观系统变化的始终态及外部条件,无须知道物质的微观结构和变化的细节即可进行有关的定量计算。
局限性:(1)对所得的结论只知其然而不知所以然;(2)不能给出变化的实际过程,没有时间的概念,也不能推测实际进行的可能性。
(3)只能适应用于人们所了解的物质世界,而不能任意推广到整个宇宙。
1.1.3 几个基本概念:1、系统与环境系统(System)——把一部分物质与其余分开作为研究对象,这这种被划定的研究对象称为系统,亦称为物系或系统。
环境(surroundings)——与系统密切相关、有相互作用或影响所能及的部分称为环境。
(1)敞开系统(open system) -系统与环境之间既有物质交换,又有能量交换。
(2)封闭系统(closed system)-系统与环境之间无物质交换,但有能量交换。
(3)孤立系统(isolated system )-系统与环境之间既无物质交换,又无能量交换,故又称为隔离系统。
有时把封闭系统和系统影响所及的环境一起作为孤立系统来考虑。
2、状态与状态性质(1)热力学系统的所有物理性质和化学性质的综合表现称为状态,而描述状态的的性质被称为状态性质(或热力学性质)一般用宏观可测性质来描述系统的热力学状态,故这些性质又称为热力学变量。
第一章 热力学第一定律核心内容:能量守恒 ΔU=Q+W主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 的计算一、内容提要1.热力学第一定律与状态函数(1)热力学第一定律: ΔU=Q+W (封闭系统) 用途:可由ΔU ,Q 和W 中的任意两个量求第三个量。
(2)关于状态函数(M )状态函数:p 、V 、T 、U 、H 、S 、A 、G ……的共性: ①系统的状态一定,所有状态函数都有定值;②系统的状态函数变化值只与始终态有关,而与变化的途径无关。
用途:在计算一定始终态间的某状态函数增量时,为了简化问题,可以撇开实际的复杂过程,设计简单的或利用已知数据较多的过程进行计算。
ΔM (实)=ΔM (设)。
这种方法称为热力学的状态函数法。
③对于循环过程,系统的状态函数变化值等于零,即ΔM =0。
此外,对于状态函数还有如下关系:对于组成不变的单相封闭系统,任一状态函数M 都是其他任意两个独立自变量(状态函数)x 、y 的单值函数,表示为M=M(x 、y),则注意:因为W 和Q 为途径函数,所以Q 和W 的计算必须依照实际过程进行。
⎰-=21V V a m bdV p W ,其中p amb 为环境压力。
Q 由热容计算或由热力学第一定律求得。
dy y M dx x M dM xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=)(1循环关系式-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂xM y M y y x x M )(22尤拉关系式xy My x M ∂∂∂=∂∂∂1(p 1,V 1,T 1) (p'1,V 1,T 2) 2(p 2,V 2,T 2) (p 1,V'1,T 2) VT 将热力学第一定律应用于恒容或恒压过程,在非体积功为零(即w'=0)的情况下有:Q V =ΔU ,Q p =ΔH (H 的定义:H=U+pV )。
此时,计算Q v 、Q p 转化为计算ΔU 、ΔH ,由于U 、H 的状态函数性质,可以利用上面提到的状态函数法进行计算。