代数式与应用题
- 格式:docx
- 大小:21.22 KB
- 文档页数:7
代数式及其运算练习题一、选择题(每题2分,共20分)1. 以下代数式中,不是同类项的是:A. 3x², 5x²B. 2y, -3yC. 4a, -aD. 7b, -3b²2. 若a + b = 10,a - b = 2,求a² - b²的值:A. 20B. 36C. 40D. 803. 计算下列代数式的值:(3x - 2)(3x + 2):A. 9x² - 4B. 9x² + 6x - 4C. 6x² - 4D. 6x² + 12x + 44. 合并同类项:2x³ + 5x² - 3x + 7x² - x³ + 2x - 5:A. x³ + 12x² + x - 5B. x³ + 12x² + 3x - 5C. 12x² + 3x - 5D. 12x² + 2x - 55. 已知x = 2,求代数式3x - 2的值:A. 4B. 6C. 8D. 10二、填空题(每题2分,共20分)6. 若2x + 3y = 7,3x - 2y = 8,求5(x + y)的值:________。
7. 将代数式(2x + 1)(4x - 3)展开,结果为:________。
8. 已知x² - 5x + 6 = 0,求x的值:________。
9. 计算代数式(3x - 1)²的展开结果:________。
10. 若代数式ax² + bx + c可以分解为(2x - 1)(x + 3),求a + b + c的值:________。
三、解答题(每题15分,共60分)11. 已知a = 3,b = -2,求代数式(a + b)³ - a²b的值。
12. 给定代数式x³ - 3x²y + 3xy² - y³,证明它是一个完全平方公式。
初中数学代数式的变形与应用题一、代数式的变形代数式的变形是数学中的一项重要基本技能,可以帮助我们简化计算、研究问题、解决实际应用等。
下面我们来学习一些常见的代数式变形方法,并通过一些应用题来巩固所学知识。
1. 合并同类项合并同类项是将具有相同字母和相同指数的项合并在一起的操作。
比如,对于代数式3x + 2x + 5x,我们可以将其中的同类项3x、2x和5x相加,得到10x。
这样可以简化代数式,使之更容易计算或分析。
2. 提取公因子提取公因子是将代数式中共有的因子提取出来的操作。
比如,对于代数式4x + 2y,我们可以提取出公因子2,得到2(2x + y)。
这样可以简化代数式,更容易进行进一步求解或运算。
3. 分解因式分解因式是将代数式分解为乘积形式的操作。
比如,对于代数式5x^2 + 10x,我们可以因式分解为5x(x + 2)。
这样可以帮助我们更好地理解代数式的结构,并在解决问题时提供便利。
二、代数式的应用题通过对代数式的变形,我们可以将数学问题转化为代数式的问题,并通过解代数式来解决实际问题。
下面我们来看几个应用题,并利用代数式的变形与应用来解决这些问题。
例题一:若甲乙两人的年龄比为2:5,已知甲的年龄比乙的年龄小15岁,求甲的年龄。
解析:设甲的年龄为2x岁,则乙的年龄为5x岁。
根据题意,有2x = 5x - 15。
进行变形,得到3x = 15,解得x = 5。
代入甲的年龄2x,得甲的年龄为2 × 5 = 10岁。
例题二:一个数字的个位数和十位数之和是8,个位数比十位数小2,求该两位数。
解析:设十位数为x,个位数为y,则根据题意有y + x = 8,y = x - 2。
将第一个等式变形为y = 8 - x,代入第二个等式得到8 - x = x - 2。
解得2x = 10,即x = 5。
代入第一个等式得到y = 3。
所以该两位数为53。
通过以上两个例题,我们可以看到,代数式的变形与应用在解决实际问题时起到了重要作用。
代数式练习题(打印版)### 代数式练习题(打印版)#### 一、基础代数式运算1. 代入法求解代数式给定代数式:\( ax + b \),若 \( a = 2 \),\( b = 3 \),求代数式的值。
2. 合并同类项合并下列代数式中的同类项:\( 5x^2 + 3x - 2x^2 + x \)。
3. 代数式的简化简化代数式:\( 4y^2 - 3y + 2 - y^2 + 5y \)。
4. 多项式乘法计算多项式 \( (x + 2)(x - 3) \) 的乘积。
5. 多项式除法将多项式 \( 3x^3 - 6x^2 + 5x - 2 \) 除以 \( x - 1 \)。
#### 二、代数式的应用6. 平均数问题某班级有 25 名学生,平均分是 82 分,求总分。
7. 增长率问题如果某产品的初始价格是 100 元,每年增长 5%,求两年后的售价。
8. 速度与时间问题如果某人以 5 公里/小时的速度行走,求他 3 小时后走了多远。
9. 面积与周长问题一个矩形的长是 10 米,宽是 5 米,求其面积和周长。
10. 利润与成本问题某商品的成本是 50 元,售价是 80 元,求利润率。
#### 三、代数式的扩展11. 因式分解将代数式 \( x^2 - 9 \) 进行因式分解。
12. 配方法使用配方法将代数式 \( x^2 + 6x + 5 \) 转化为完全平方形式。
13. 代数式的不等式解不等式 \( 3x + 2 > 11 \)。
14. 代数式的方程解方程 \( 2x^2 - 5x + 1 = 0 \)。
15. 代数式的函数图像描述函数 \( y = x^2 \) 在 \( x = 0 \) 时的图像特征。
#### 四、综合应用题16. 代数式在几何中的应用一个直角三角形的两条直角边分别为 \( a \) 和 \( b \),求斜边的长度。
17. 代数式在物理中的应用如果一个物体从静止开始以匀加速运动,加速度是 \( 2 \) 米/秒²,求 3 秒后的速度。
例1:在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后再加上3,就近似地得到该地当时的温度.
(1)用代数式表示该地当时的温度;
(2)当蟋蟀1分钟叫的次数分别是80,100,和120时,该地当时的温度约是多少?
例2、如图:这棵树的高度是1.2米,在某时刻测得它影子的长度是2米,此时这棵树的高度是它影子的多少倍?
(1)如果用L表示物体影子的长度,如何用
代数式表示此时此地物体的高度?
(2)此时该地某建筑物的影长为5.5米,那
么此时它的高度是多少?
练习:
1、甲种日记本每本x元,乙种日记本每本y
元,用代数式表示购买10本甲种日记本和5本乙种日记本的总钱数是多少?2、甲乙两人加工同一种产品,甲每天加工x只产品,乙每天加工y只产品,甲加工了10天,乙加工了5天,试用代数式表示加工产品的总数?
3、某市出租车收费标准为:起步价10元,3千米后每千米价1.8元。
则某人乘坐出租车x(x>3)千米的付费为____________元。
1:根据条件列出式子①比a大5的数:;②b的一半与8的差:;③的3倍减去5:;④a的3倍与b的2倍的商:;⑤汽车每小时行驶v千米,行驶t小时后的路程为千米;⑥某建筑队一天完成一件工程的,天完成这件工程的;⑦某商品原价为a元,打七五折后售价为元;⑧某商品每件x元, 买a件共要花元;⑨某商品原价为a元,降价20%后售价为元;⑩某商品原价为a元,升价20%后售价为元;二、自主学习1.根据条件列出等式:①比a大5的数等于8:;②b的一半与7的差为:;③的2倍比10大3:;④比a的3倍小2的数等于a与b的和:;⑤某数的30%比它的2倍少34:;2.例1 根据下面实际问题中的数量关系,设未知数列出方程:(1)用一根长为24cm的铁丝围成一个正方形,正方形的边长为多少?解:设正方形的边长为cm,列方程得:。
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?解:设x月后这台计算机的使用时间达到规定的检修时间2450小时;列方程得:。
(3)某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?解:设这个学校学生数为,则女生数为,男生数为,依题意得方程:。
【课堂练习】1.课本82页练习2.练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元。
问:小明买了几本练习本?3.长方形的周长为24cm,长比宽多2cm,求长和宽分别是多少。
【要点归纳】:上面的分析过程可以表示如下:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
【拓展训练】:1.根据下面实际问题中的数量关系,设未知数列出方程:(1)某校女生人数占全体学生数的55%,比男生多50人,这个学校有多少学生?(2)A、B两地相距200千米,一辆小车从A地开往B地,3小时后离B地还有20千米,求小卡车的平均速度。
七年级上册期中复习训练八模块十八:代数式相关的综合应用题1.某学生用品商店中,书袋每只定价20元,圆珠笔每支定价5元.现推出两种优惠方法:①按定价购1只书袋,赠送1支圆珠笔;②购书袋、圆珠笔一律按9折优惠.小丽和同学需买4只书袋,圆珠笔x支(不低于4支).(1)若小丽和同学按方案①购买,需付款元:(含x的代数式表示并化简)若小丽和同学按方案②购买,需付款元.(含x的代数式表示并化简)(2)若x=10,小丽和同学按方案①购买,需付款元;小丽和同学按方案②购买,需付款元.(3)现小丽和同学需买这种书袋4只和圆珠笔12支,请你设计一种最合算的购买方案,并直接写出最合算的购买费用.2.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如下表:已知小刚家上半年的用电情况如下表(以200度为标准,超出200度记为正、低于200度记为负):一月份二月份三月份四月份五月份六月份-50 +30 -26 -45 +36 +25根据上述数据,解答下列问题:(1)小刚家用电量最多的是月份,实际用电量为度;(2)小刚家一月份应交纳电费元;(3)若小刚家七月份用电量为x度,求小刚家七月份应交纳的电费(用含x的代数式表示).3.为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过200立方米的部分按每立方米3元收费;超过200立方米不超过300立方米的部分按每立方米5元收费;超过300立方米的部分按每立方米6元收费.(1)设每年用水量为x立方米,请用含x的代数式表示应缴水费;(2)小明家预计2019年全年用水量为320立方米,那么按“阶梯水价”收费,他家全年应缴水费多少元?4.某文具店出售钢笔和水笔,钢笔每支定价18元,水笔每支定价3元,该店的优惠办法是买钢笔一支赠水笔一支,老师欲购买钢笔5支,水笔x支(水笔数超过5支)作为班级活动的奖品.(1)用含x的式子表示老师的应付款;(2)若老师此次共付款120元,请求出x的值.5.某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A 产品售价为30元/千克,水价为5元/吨.设甲车间用x箱原材料生产A产品.(1)用含x的代数式表示:乙车间用________箱原材料生产A产品;(2)求两车间生产这批A产品的总耗水量;(3)若两车间生产这批产品的总耗水为200吨,则该厂如何分配两车间的生产原材料?(4)用含x的代数式表示这次生产所能获取的利润并化简.(注:利润=产品总售价-购买原材料成本-水费)6.“湖田十月清霜堕,晚稻初香蟹如虎”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为80元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~50部分50以上~150部分150以上~250部分250以上部分价格(元)零售价的95% 零售价的85% 零售价的75% 零售价的70%(1)如果他批发80千克太湖蟹,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克太湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B两家批发所需的费用;(3)现在他要批发200千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.7.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价40元,乒乓球每盒定价5 元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠两盒乒乓球;乙店的优惠办法是:全部商品按定价的8.5 折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于8盒).(1)当购买乒乓球的盒数为x盒时,在甲店购买需付款元?在乙店购买需付款元?(用含x的代数式表示)(2)当购买乒乓球盒数为20 盒时,去哪一家商店购买较合算?请计算说明.(3)当购买乒乓球盒数为20 盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?8.某商场销售一种西装和领带,西装每套定价400元,领带每条定价50元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案, 两种优惠方案可以任意选择:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x(20)x>.(1)若该客户按方案一购买,需付款元(用含x的式子表示), 若该客户按方案二购买,需付款元(用含x的式子表示)(2)若30x=,通过计算说明此时按哪种方案购买较为合算;(3)当30x=时,你能给出一种更为省钱的购买方法吗?试写出你的购买方法和所需费用.9.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费。
《代数式的值》应用题例1.一辆公共汽车上有38人,在前门站下去a人,又上来b人.1.用式子表示这时车上有多少人.2 .根据这个式子,求a= 25, b= 18时,车上有多少人?分析:用车上原有的人数减去下去的人数,再加上上来的b人,所以这时车上的人数用式子表示是38-a+b.把a = 25, b= 18代入上式得车上这时的人数.解:1.38 - a+ b2 .当a= 25, b= 18 时,38 —25+ 18= 31答:车上有(38—a+b)人.当a= 25, b= 18时,车上共有31人.例2.用含有a、b、h的式子表示右图的面积.分析:这是一个组合图形,由一个三角形和一个长方形组成的,三角形的面积是ah宁2长方形的面积是ah,最后求三角形和长方形的面积和就是这个组合图形的面积.解:三角形的面积是:ah+2长方形的面积是:ah组合图形的面积是:ah—2 ah答:这个组合图形的面积是:ah—2 ah.例3.汉口到上海的水路长1125千米.一艘轮船从汉口开往上海,每小时行26千米.1.开出t小时后,离开汉口多少千米?如果t 12,离开汉口有多少千米?2.开出t小时后,到上海还要航行多少千米?如果t 20,到上海还有多少千米?分析:由题意知每小时26千米是轮船的速度,t小时是行驶的时间,则离开汉口的路程是速度乘时间,即26t;当t 12时,表示给出t所代表的数值,求26t这个含有字母的式子的值是多少.到上海还要行多少千米,就是求剩下的路程,用总路程1125减去t小时行的路程.解:1. 26t 如果t 1226t= 26X 12= 3122. 1125-26t 如果t 201125-26t = 1125-26X 2=605答:开出t小时后,离开汉口26t千米;如果t 12,离开汉口312千米;开出t小时后,到上海还要航行(1125-26t)千米;如果t 20,到上海还有605千米.例4•一列火车每小时行80千米,t小时所行路程是多少千米?当t 3时,火车所行路程是多少千米?当t 0.5时,火车所行路程是多少千米?分析:由题意知每小时80千米是火车的速度,t小时是行驶时间,则t小时所行路程是速度乘时间,即80t ;当t 3或t 0.5时,表示给出t所代表的数值,求80t这个含有字母的式子的值是多少,可直接代入求值.解:火车t小时行驶的路程是80t.当t 3 时,80t = 80 X 3 240当t 0.5 时,80t = 80X 0.=40答:当t 3时,火车行驶240千米.当t 0.5时,火车行驶40千米.例5.水果店上午运来苹果a箱,下午运来苹果b箱,每箱苹果m千克.1 .用式子表示水果店一共运来苹果的千克数和上午、下午运来苹果的平衡千克数,以及上午运来的苹果比下午的多多少千克?2 .当a= 40, b = 25, m = 20时,求出上面几个式子的实际数.分析:1 .上午运来a箱,下午运来b箱,共(a+b)箱,每箱m千克,故共m(a+ b)(千克),或上午a箱,共am (千克),下午b箱,共bm (千克),上、下午共(am+ bm)千克;上、下午运来苹果的平衡数为m (a+ b)*2(千克)或(am+ bm)*2(千克).上午运来的苹果比下午的多(am—bm)(千克).2.把a = 40, b = 25, m = 20分别代人上面各式中相应的字母,计算即得实际数.解:1.上午、下午共运来苹果:m (a+ b)(千克)或(am+ bm)(千克);上、下午运来苹果的平衡数为:m (a+ b)*2(千克)或(am+ bm)*2 (千克);上午运来的苹果比下午的多:(am—bm)(千克)或m (a—b)(千克).2.当a= 40, b= 25, m = 20 时m (a+ b)= 20x(40 + 25) = 1300 (千克),m (a+ b) *220x(40+ 25) *2650 (千克)m (a—b)= 20x(40 —25) = 300 (千克).。
代数方程的应用题练习100一、选择题1.如果关于x 的方程m x =+-312没有实数根,那么m 的取值范围是( )(A )m ≥0; (B )m ≥3; (C)m <0 ; (D)m <3.2.等式29x -=x +3·x -3成立的条件是 ( )(A )x ≤3; (B )x ≥3; (C )x ≥-3; (D )-3≤x ≤3.3.打印一份稿件,甲需要a 小时,乙需要b 小时,甲、乙两人共同打印这份稿件需要的时间是( )(A )2b a +小时; (B )ab b a +小时; (C )b a ab +小时; (D )ba +2小时. 4.某市为发展教育事业,加强了对教育经费的投入,2007年投入3000万元,预计2009年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )(A )23000(1)5000x +=; (B )230005000x =;(C )23000(1)5000x +=%; (D )23000(1)3000(1)5000x x +++=.5.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,为求二月、三月平均每月的增长率是多少,可设平均每月增长的百分率为x ,根据题意,列出的方程是( )(A ) 50(1+x )2=175 ; (B )50+50(1+x )2=175;(C )50(1+x )+50(1+x )2=175; (D )50+50(1+x )+50(1+x )2=175 .6.某景区有一景点的改造工程要限期完工.甲工程队独做可提前1天完成,乙工程队独做要误期6天.现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成.设工程期限为x 天,则下面所列方程中正确的是( ).(A )1614=-++x x x ;(B )614-=-x x x ;(C )1614=++-x x x ;(D )x x x x =++-614. 二、填空题1.已知关于x 的方程1(3)10(0)m x m x x ++--=≠,当m_________时,它是一元二次方程。
代数方程-列方程解应用题知识结构增长(降低)率工作效率利润行程几何图形其他知识精讲类型一、增长(降低)率增长率问题公式:2(1)a x b ±=其中a 为初始值即变化前的值,b 为变化后值,x 为增长率或者降低率.例题1、一种药品经过两次降价后,每盒的价格从原来的60元降到现在的48.6元,设平均每次的降低率是x 元,则可以列方程:_____________,降低率是________.例题2、某公司去年各项经营收入中,经营电脑配件收入为500万元,占全部经营总收入的13,该公司预计明年经营总收入达到2160万元,求从去年到明年每年经营总收入的平均年增长率.例题3、一辆汽车,新车的购买价是20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后的价值是11.56万元,求这辆车第二、三年的折旧率.例题4、某工厂甲、乙两个车间在6月份共生产231台仪器,每个车间都比上月增产,且增产的百分率相同,已知甲车间上个月月产量不少于100台,6月份比上个月增产5台,乙车间上月生产120台.问:甲车间上月生产多少台?6月份每个车间增产的百分率是多少?例题5、某农户种植花生,原来种植的亩产量为200千克,出油率为50%,现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量增长率的12,求新产品花生亩产量的增长率?例题6、某工厂今年头三个月生产甲、乙两种产品,已知甲种产品1月份生产16件,以后每月比上月增长相同的百分率;乙种产品每月比上月增产10件.又知2月份的甲、乙两种产品的产量之比为2:3,且3月份的两种产品的产量之和为65件,求甲种产品每月的增长率和乙种产品1月份的产量.类型二、工作效率工作总量=工作效率 工作时间;假设工作总量是1,则工作效率是1工作时间.例题1、(1)一项工程甲单独做需要a天完成,乙单独做需要b天完成,则甲乙合作需要_____天完成;(2)甲、乙两个工程队合作修筑一条通道,已知甲工程队比乙工程队每天多修5米,甲工程队修筑80米所用的时间与乙工程队修筑70米所用的时间相同,那么甲工程队每天修________米,如果设甲工程队每天修x米,则可列出方程__________.例题2、某服装厂准备加工300套演出服,在加工了60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用了9天完成任务,求该厂原来每天加工多少套演出服.例题3、汛期到来之前,某施工队承接了一段长300米的河提加固任务,加固80米后,接到防汛指挥部的指示,要求加快施工速度,为此施工队在保证质量的前提下,每天多加工15米,这样一共用了6天完成了任务,问接到指示后,施工队每天加固河堤多少米.例题4、有一项工程,甲单独做比甲、乙合作的天数多5天,如果甲、乙先合作4天,再由乙单独做3天,才能完成全部工作的一半,问甲、乙单独完成此项工程各需要多少天.例题5、某工厂甲、乙两个车间各生产300个零件,按原来的工效,乙车间需要比甲车间多用一天的时间完成,现在甲、乙两车间都提高了工效,其中甲车间工效提高了20%,而乙车间提高了一倍,结果生产同样的300个零件,乙车间比甲车间少用了2天就可完成,问甲、乙两车间原来生产300个零件各需要多少天?例题6、已知甲、乙、丙三人做某项工作,甲独做所需要的时间是乙、丙两人合做这件工作的a倍,乙独做需要的时间是甲、丙两人合做这件工作的b倍,求丙独做所用的时间是甲、乙两人合做此工作的几倍.例题7、一个水池有甲、乙两个进水管,单独开放甲管注满水池比单独开放乙管少用10小时,如果单独开放甲管10个小时后,加入乙管,需要6个小时把水池注满,那么单独开放一个水管,需要多少小时才可以把水池注满?类型三、利润单件利润=售价-成本;总利润=单件利润 销售件数.例题1、某各个体户以2元/kg的价格购进一种食品,以3元/kg的价格出售,每天可售出200kg,为促销,该个体户决定降价销售,经调查,这种食品每降价0.1元/kg,每天可多售出40kg,另外每天房租等固定成本24元,此人想每天盈利200元,应将售价降低为多少元/kg?例题2、甲、乙两家便利店到批发站采购一批饮料,共25箱,由于两店所处的地理位置不同,因此甲店的销售价格比乙店的销售价格每箱多10元.当两店将所进的饮料全部售完后,甲店的营业额为1000元,比乙店少350元,求甲乙两店各进货多少箱饮料?例题3、某水果店在水果批发市场用100元购进一批甲种水果,再用100元购进一批乙种水果,已知购进的乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价低0.5元/千克.(1)求甲乙两种水果各购进了多少千克?(2)购进水货当天,甲乙两种水果都按照2.8元/千克出售,乙种水果很快售完,而甲种水果先售出35,剩余的按售价打5折出售,这一天的水果买卖是否赚钱?如果赚钱了,赚多少?如果不赚钱,那么赔了多少?例题4、某中学库存960套旧课桌椅,准备修理后捐助给贫困山区学校,现在有甲乙两个木工小组都希望承揽这项业务,经协商研究得知:甲小组单独修理这批桌椅比乙小组单独修理要多用20天;乙小组每天比甲小组多修理8套;学校每天需要付甲乙小组修理费分别是80元和120元;(1)求甲乙两个小组每天各修理课桌椅多少套?(2)在修理桌椅的过程中,学校委派一名维修工进行质量监控,由学校每天发出10元钱作为生活补贴;现在有三种修理方案:方案一由甲单独修理;方案二由乙单独修理;方案三由甲乙共同修理;选择哪种方案,更省钱?类型四、行程行程问题中三个变量:路程、速度和时间,关系如下:路程=速度 时间可以通过等式的先关计算推导出速度、和时间的相关计算公式.例题1、小王从甲地到乙地需要m分钟,若小李同时从乙地到甲地,则两人经过n分钟相遇,则小李从乙地到甲地需要_________分钟(用含m、n的代数式表示).例题2、甲、乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时,二人每小时各走多少米?例题3、已知A、B两地相距125km,甲乙两人同时A、B两地出发,相向而行,每走10km 甲比乙快36分钟,经5小时两人相遇,求甲乙两人的速度.例题4、甲、乙两人分别从相距27千米的A 、B 两地同时出发,相向而行,3小时相遇,随后两人按照原来的速度继续前进,甲到达B 地比乙到达A 地少用1小时21分钟,求两人的速度.类型五、几何图形关于线段长度类问题,主要列无理方程求解;与面积相关的问题;图形中的动点问题.例题1、函数y =2x 图像上一点P 到点A (5,0)的距离是5,求点P 的坐标.例题2、已知直角三角形的两条直角边的差是2cm ,它的面积是12cm 2,求这两条直角边的长.例题3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度围成一个正方形,两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度,若不能,请说明理由.例题4、如图,笔直公路上A 、B 两点相距10千米,C 、D 为两居民区,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =6千米,CB =8千米,现要在公路AB 段上建一超市E ,使C 、D 两居民区到E 的距离相等,则超市E 应建在离A 处多远处. A B C DE例题5、有一块长x 米,宽120米(x >120)的长方形,投资方计划将它分成甲乙丙三部分,其中甲和乙为正方形,甲为住宅区,乙为商场,丙为公司,若已知丙地的面积为3200米,求x 的值.例题6、有一块长为80米,宽为50米的长方形绿地,其中有三条直路(图中的阴影部分,道路的一边AD 与长方形绿地的一边平行,且道路的出入口AB 、CD 、EF 、KI 、GH 、IJ 的长度都相等,其余部分种植绿化).已知道路的面积为352平方米,求道路出入口的边的长度例题7、等腰Rt △ABC 中,8 cm AB BC ==,动点P 从点A 出发,沿AB 向点B 移动.通过点P 引平行于BC 、AC 的直线与AC 、BC 分别交于点R 、Q ,问:AP 等于多少厘米时,平行四边形PQCR 的面积等于162cm .甲 乙丙AB CD EF G H KI J AB CP QR例题8、m、n为两条互相垂直的笔直公路,工厂A在公路n上,距公路m为1千米,B与工厂A在公路m的同侧,且距公路m为2千米,距公路n为3千米.现要在公路m上建造一个车站P,使它与A、B的距离之和为25千米,求P 的位置.mn例题9、已知A(0,-1),B(0,4),点P在坐标轴上,且PA+PB=35,求点P的坐标.例题10、如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点B出发沿BC边向点C以2cm/s的速度移动.(1)如果P、Q同时出发,当某个点先到达终点时,运动终止.问:几秒钟后,可使△PCQ的面积为8平方厘米?(2)如果P、Q同时出发,且点Q到达点C后立即返回,速度保持不变,直到点P到达点C后同时停止运动,那么在整个移动过程中,是否存在某一时刻,使得△PCQ的面积等于1平方厘米?若存在,求出运动时间;若不存在,请说明理由.类型六、其他例题1、有一个非零数,它与4的和的正平方根再加上2后恰好等于它本身,求这个数.例题2、有一个两位数,如果个位上的数与十位上的数的和是5,并且个位上的数的平方比十位上的数大1,求这个两位数.例题3、某剧场有座位800个,每排的座位数一样多,在每排增加5个座位,并增加2排后就有座位1020个,问原来座位多少排?原每排多少个座位.例题4、植树节前,园林局把植数1600棵的任务交给了一个小队,小队被分成若干个组,计划每个组植树的棵树相同,但后来又4个组另有任务不能参加,所以其他组就要比原计划多植树20棵,每个小分队共分成了多少个组.例题5、学校甲、乙、丙三个摄影兴趣小组进行了一次摄影作品交流活动,活动时,每位同学向不同组的每个组员送一张摄影作品,这样互相交流的摄影作品共310张,已知甲组人数是丙组人数的2倍,乙组比甲组少3人,这三个摄影小组各有多少人?例题6、小强放学回家后,向爸爸、妈妈询问火箭队与雄鹿队的当天的篮球比赛的结果,妈妈说:“本场比赛火箭队的姚明比雄鹿的易建联多得了12分”.爸爸说:“如果把姚明的分数乘以易建联的得分再加上36分,恰好等于他们两人的得分之和的15倍,并且,如果姚明的得分不超过30分,则雄鹿队胜,否则,火箭队胜”,请你帮小强算一下,这场比赛,究竟是哪个队胜了?姚明和易建联各得了多少分?练习题1、某公司1996年出口创收135万元,1997年、1998年每年都比上一年增加a%,那么1998年这个公司出口创收_________元.2、甲、乙两个工程队合修一条路要6天完成,如果各队单独修路,则甲队比乙队少用5天,设甲、乙两队单独修路所需天数分别为x天和y天,则可列方程组为()A.65x yx y+=⎧⎨=-⎩B.65x yx y+=⎧⎨=+⎩C.11165x yx y⎧+=⎪⎨⎪=-⎩D.11165x yx y⎧+=⎪⎨⎪=+⎩3、已知点A(12,2),B(3,-1),在x轴上找一点P,使PA=2PB.4、甲、乙两组工人合做某项工作,10天以后,因甲组另有任务,乙组再单独做2天才完成,如果单独完成这项工作,甲组比乙组可以快4天,求各组单独完成这项工作所需要的天数.5、有一面积为150平方米的长方形饲养场,饲养场一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米,求饲养场的长和宽.6、修建360米长的一段高速公路,甲工程队单独修建比乙工程队多用10天,甲工程队每天比乙工程队少修建6米.甲工程队每天修建的费用为2万元,乙工程队每天修建的费用为3.2万元.(1)求甲、乙两个工程队每天各修建多少米;(2)为在35天内完成修建任务应请哪个工程队修建这段高速公路才能在按时完成任务的前提下所花费用较少?并说明理由7、要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛.8、初二(1)班班委会主动为班级上一位生病住院的同学筹集部分医药费,计划筹集600元,由全体班委同学分担,后来又6位同学知道消息后也自愿参加了捐助和班委同学一起分担,因此每个班委的同学比原来少分担了50元,问:该班委有几个人?按照原计划每个班委平均分摊多少元.9、制造一种产品,原来每件的成本是500元,销售价是625元,经市场预测,该产品销售价第一个月将降低20%,第二个月将比第一个月提高6%,为了使两个月后的原销售利润不变,该产品的成本价平均每月应降低多少?10、一汽艇用一定速度驶完一段路程,若汽艇每小时少走8千米,则走完全程要多用4小时,若汽艇每小时多走8千米,则走完全程可少用2小时,试求这段路的长度以及汽艇原来的速度.11、有两块正方形的木板,其中大块的面积比小块的面积大45平方分米,已知小木块的边长比大木块的边长短3分米,求这两块木板的面积分别是多少.12、坐标轴上有B、C两动点.B从P(4,0)点以1v=的速度沿x轴负方向运动,同时CB点从y轴某处以2v=的速度直线运动.问两点能否在OP的中点A处相遇,若能,求CC点的起始坐标;若不能,说明原因.巩固1、已知有两个数,甲数与乙数的和为9,甲数的倒数减去乙数的倒数等于120,求这两个数.2、甲乙两个工程队合作一项工程,6天可以完后,如果单独工作,甲队比乙队少用5天完成,两队单独完成各需要多少天完成?3、已知P在第二四象限的角平分线上,且它到点A(4,0),B(1,3)的距离相等,求点P的坐标.4、学校电脑小组活动中,学生小丽为使输入200个汉字所用的时间减少10秒必须把每秒钟输入汉字的字数增加10%,问小丽原来输入200个汉字的时间是多少秒?5、某车间承包了装配及其240台的任务,要求按时按量完成,由于进行了技术革新,每天可多装配1台,结果该车间不但比规定提前了11天完成任务,还多装配了5台,合同规定的时间是多少天.6、小明同学到文具店买了两种品牌的笔共16支,其中买甲品牌的笔用了12元,买乙品牌的用了9元,甲品牌的笔每支比乙品牌的笔便宜0.3元,问甲乙两种品牌的单价是多少?7、某种汽水有大、小瓶装两种规格,现用48元购大瓶装汽水,80元购小瓶装汽水,总共26瓶,如用80元购大瓶装汽水,48元购小瓶装汽水,总共22瓶,求大小瓶装汽水各多少元?8、某经济开发区今年1月份工业产值达50亿元,第一季度的总产值为165.5亿元,问:2月份、3月份每月的增长率是多少?9、甲、乙两人加工一批零件,甲独做比两人合做多用18天,乙独做比两人合做多用32天.求甲、乙独做各需要多少天?10、如图,现有一长方形的地,长是15米,宽是10米,要在它的中央划一块长方形的花坛,花坛四周铺上草地,草地的宽都相等,花坛占原长方形面积的13,求草地的宽是多少米.11、了缓解甲、乙两地的旱情,某水库计划向甲乙两地送水,甲地需要水量180万立方米,乙地需要水量120万立方米.现已经两次送水,第一次往甲地送水3天,第二次往乙地送水2天,共送水84万立方米,第2次往甲地送水2天,往乙地送水3天,共送水81万立方米,如果每天的送水量相同,那么完成往甲地、乙地送水任务还需要多少天?测试卷一、填空题1、一次同学聚会时,大家一见面就互相握手,一共握了45次,则参加聚会的同学共 _________人.2、某款轿车原价a 万元,现在平均每次降价%x ,经过连续两次降价后的车价是_______.3、学校组织为贫困地区儿童捐资助学活动.其中八年级(1)班和八年级(2)班捐款总额分别为1 000元和900元.已知八年级(1)班比八年级(2)班少5名学生,而八年级(1) 班的人均捐款额比八年级(2)班的人均捐款额多5元.设八年级(1)班有学生x 名,则可列方程 __________.4、某城市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.为使工程能提前3个月完成,需要将原定的工作效率提高12%,则原计划完成这项工程用_____个月.5、一个数和它的正的平方根的和是6,则这个数是________.6、点P 在x 轴上,且点P 到点()3,4Q -的距离是它到点()6,2R 距离的2倍,则点P 的坐标为________.7、点P 在第一、三象限两坐标夹角的角平分线上,且与点()4,4A 的距离等于2,则点P 的坐标为________.8、甲、乙两人分别从A ,B 两地同时出发,匀速相向而行,在距离B 地6千米处相遇,相遇后两人又继续前进,当他们分别到达B 地、A 地后立刻返回,又在距A 地4千米处 相遇,若甲回到原处比乙早20分,则甲的速度为______,乙的速度为______.二、选择题9、某学校用420元钱到商场购买某消毒液,经过还价,每瓶便宜0.50元,结果比用原价多买了20瓶,设原价每瓶x 元,则可列出方程为( ).A .420420200.5x x -=- B .420420200.5x x-=- C .4204200.520x x -=- D .4204200.520x x -=- 10、有一位同学生病住院,需缴纳医药费1 440元,班委发动了一部分同学捐款(每人捐款数相同),捐款活动后,又有8位同学也要加入捐款,这样使原来参加的每位同学的捐款比预计少20元之外,还可以买一包16元的奶粉,则原来参加捐款的人数为( ).A .20B .28C .50D . 7211、甲、乙两人骑自行车从相距60千米的A , B 两地相向而行,甲从A 地出发至2千米时,想起有东西忘在A 地,即返回去取,又立即从A 地向B 地行进,甲、乙两人恰好在 AB 中点相遇,已知甲的速度比乙的速度快2.5千米/时,求甲、乙两人的速度.设乙的速度是x千米/时,所列方程正确的是().A.32302.5x x=+B.32302.5x x=-C.34302.5x x=-D.34302.5x x=+三、列方程(组)解应用题12、某商场在“五一”节期间实行让利销售,全部商品一律按9折销售,这样每天所获得的利润恰是销售收入的20%,第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元,求(1)第三天的销售收入是多少万元;(2)第二天和第三天销售收入平均每天的增长率.13、甲、乙两城间的铁路路程为2 400千米.经过技术改造,列车实施提速,提速后比提速前速度增加40千米/时,列车从甲城到乙城的行驶时间减少2时.这条铁路在现有条件下安全行驶速度不得超过250千米/时.请你用学过的数学知识说明在这条铁路的现有条件下列车还可以再次提速吗?14、某工程若由甲、乙两队合作6天完成,厂家需付甲、乙两队共8 700元;若由乙、丙两队合作10天完成,厂家需付乙、丙两队共9 500元;若由甲、丙两队合作,5天完成全部工程的23,厂家需付甲、丙两队共5 500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少? 请说明理由.15、某工程队承担了铺设一段长3千米的地铁轨道的光荣任务,铺设600米后,该工程队改进技术,每天比原来多铺设10米,结果共用了 80天完成任务,试问:该工程队改进技术后每天铺设轨道多少米?16、有一种书包的批发价格是每个40元,当每个标价50元进行销售时,估计能卖出500个,但是售价每提高1元,销售量就会减少10个,另外,商店经营应按销售利润的10%缴纳销售税.商店希望通过销售这种书包能净赚纳税后利润7 200元,又能让顾客得益,求每个书包应该定价为多少元?17、两名滑冰运动员甲和乙分别在平坦的冰面上的点A和点B, AB之间的距离是100 米,甲离开点A以8米/秒的速度沿着与AB成60°角的直线滑行,在甲离开点A的同时,乙以7米/秒的速度也沿着一条直线滑行离开点B,这条直线能使两名滑冰者在给定的速度下最早相遇,求最早相遇的时间.18、有一特殊材料制成的质量为30克的泥块,现把它切开为大小两块,将较大泥块放在一架不等臂天平的左盘,称得质量为27克,又将较小泥块放在该天平的右盘中,称得质量为8克,若只考虑天平的臂长不等,其他因素忽略,试求出两个泥块的质量.2122。
试卷第1页,共3页 第五单元代数式与方程应用题训练1.(1)小明买x 本日本记和一个足球要用多少元?(用式子表示)(2)王老师买了a 个排球,n 个足球,共花了多少元?(用式子表示)当5a =,3n =时。
求出总价。
2.柳树和杨树各多少棵?A .柳树比杨树多26棵。
B .柳树的棵数比杨树的3倍多4棵。
C .柳树和杨树一共48棵。
(1)你选择的条件是________和________(只填序号)(2)用方程解答。
3.小明去书店买了3本练习本和2本科技书一共用去35.8元,已知科技书共9.4元,一本练习本多少元?(用方程解答)4.师傅每小时加工75个零件,两个徒弟每人每小时可以加工25个零件,请问师徒三人经过多少小时可完成500个零件?5.成渝铁路始于成都站,止于重庆站,全长504千米。
两列火车分别从成都和重庆同时出发相向而行,经过4小时相遇。
已知慢车平均每小时行41千米,那么快车平均每小时行多少千米?(列方程解答)6.仓库里有两个货位,第一货位上有78箱货物,第二货位上有42箱货物,两个货位上各运走了相同的箱数之后,第一货位上的箱数还比第二货位上的箱数多2倍.两个货位上各运走了多少箱货物?试卷第2页,共3页16.建筑工地要运一批沙子,原计划用载重为4.5吨的货车运,需要运7次;现改用载重为3.5吨的货车运,需要运几次?17.两座大楼的门口相距300m,甲、乙两人分别从两座大楼门口同时向相反的方向走(如图),7分钟后两人相距860m.甲每分钟走37m,乙每分钟走多少米?18.小黄,小林,小名三人期末考试英语成绩总和为289分,已知小黄比小林多8分,小林比小名少8分.三个人各得多少分?19.甲乙两车在同一地点出发,甲车先走0.5小时后乙车出发,两车同时到达,甲车速度70km/h,乙车速度80km/h,出发地到目的地的路程是多少千米?20.龟兔准备进行第二次赛跑,兔子让乌龟先跑1000米后它再跑,如果兔子每分跑35米,乌龟每分跑10米,兔子跑几分后就能追上乌龟?试卷第3页,共3页答案第4页,共2页小名得分99分答:小林得分91分,小黄得99分,小名得99分.19.280千米20.40分。
代数式方面的应用题代数式是一种数学表达式,通常由字母、数字、运算符等组成。
在代数式中,字母通常代表未知数,而数字和运算符则用于描述这些未知数之间的关系。
代数式在数学中有着广泛的应用,可以用于解决各种问题,包括应用题。
应用题是一种实际问题,通常涉及到数量关系和实际问题。
应用题中的问题需要用数学模型进行描述和解决。
代数式在解决应用题中有着重要的作用,可以通过代数式的变形和运算来找到问题的解决方案。
下面我将通过一些例子来说明代数式在解决应用题中的应用。
1、线性方程的应用线性方程是代数式中的一种基本形式,通常用于解决实际问题。
例如,有一个线性方程:3x + 2 = 5。
这个方程描述了一个简单的问题:3个未知数加上2等于5。
通过解这个方程,我们可以找到未知数x的值。
在实际问题中,线性方程可以用于解决各种问题,例如:* 购物问题:一个人购买了3个苹果和2个橙子,总共花费了5元。
我们需要找出每个水果的单价。
* 距离问题:一个人走了3小时,每小时走了2公里,总共走了多少公里?* 时间问题:一个人每天工作3小时,每小时可以完成2项任务,他一共可以完成多少项任务?通过建立代数式,我们可以方便地描述这些问题,并找到解决方案。
2、二次方程的应用二次方程是一种更复杂的代数式形式,通常用于解决涉及到平方的问题。
例如,有一个二次方程:x^2 - 6x + 9 = 0。
这个方程描述了一个问题:一个数的平方减去6乘以这个数再加上9等于0。
通过解这个方程,我们可以找到满足这个条件的数的值。
在实际问题中,二次方程可以用于解决各种问题,例如:* 面积问题:一个人需要用篱笆围成一个面积为6平方米的矩形花园。
我们需要找出花园的长和宽。
* 利润问题:一个人销售了100个产品,每个产品的成本是1元,售价是2元。
我们需要计算他的总利润。
* 速度问题:一辆汽车以每小时100公里的速度行驶了10分钟,我们需要计算它行驶的距离。
通过建立代数式,我们可以方便地描述这些问题,并找到解决方案。
1、有一条铁丝长a 米,第一次用去了一半少1米,第二次用去了剩余的一半多1米,这条铁丝还剩余多少米?2、已知三角形第一边长为2a +b ,第二边比第一边长a -b ,第三边比第一边短a ,求这个三角形的周长.3、一个两位数,它的十位数字为a ,个位数字为b .若把它的十位数字与个位数字对调,将得到一个新的两位数.计算新数与原数的和与差,并请回答:这个和能被11整除吗?差呢?4、 有一道题:“计算()()()32332322332232y y x x y xy x xyy x x -+-++---- 的值,其中x =21,y =-1.”甲同学把“x =21”错抄成“x =-21”,但他计算的结果却是正确的.这是怎么回事?5、人在运动时心跳速率通常和人的年龄有关.用a 表示一个人的年龄,用b 表示正常情况下,这个人在运动时承受的每分钟心跳的最高次数,则)220(8.0a b -=.(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒心跳次数为22次,请问他有危险吗?为什么?6、某企业去年的年产值为a 亿元,今年比去年增长了10%.如果明年还能按这个速度增长,请你预测一下,该企业明年的年产值将能达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?7.用棋子摆出下列一组图形:(1)(2)(3) (1).填写下表:(2).照这样的方式摆下去,写出摆第n 个图形棋子的枚数;8、我国出租车收费标准因地而异.A市为:行程不超过3千米收起步价10元,超过3千米后每千米增收1.2元;B 市为:行程不超过3千米收起步价8元,超过3千米后每千米价增收1.4元.试问在A、B两市乘坐出租车x(x>3)千米的价差是多少元?9. 某地电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:0.05元/分;(B)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)如果某用户一个月内上网的时间为20小时,你认为采用哪种方式较为合算?x 27、某公园的门票价格是:成人20元,学生10元,满40人可以购买团体票(打8折),设一个旅游团共有x(40)人,其中学生y人。
代数式应用题1.代数式应用题1.1.某超市在春节期间对顾客实行优惠,规定如下表:一次性购物 | 低于200元 | 低于500元但不低于200元 | 不低于500元 |优惠 | 元的部分给予8折优惠 | 元的部分给予9折优惠 | 元的部分给予9折优惠 |1) ___一次性购物600元,他实际付款为 540 元。
2) 若某顾客在该超市一次性购物 x 元。
当 x 小于500但不小于200时,他实际付款为 0.9x 元;当 x 大于或等于500时,他实际付款为 0.9x 元。
3) 如果___两次购物的货款合计为820元,第一次购物的货款为 a 元(200 < a < 300),则两次购物王老师实际付款为0.9a + 0.9(820 - a) = 738 - 0.1a 元。
1.2.周末___陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售同样的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元。
两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠。
___爸爸需买茶壶5把,茶杯 x 只(x 不小于5)。
1) 若在甲店购买,则总共需要付 150 + 5x 元;若在乙店购买,则总共需要付 0.9(150 + 5x) 元。
2) 如果需要购买15只茶杯,且只能在同一家商店购买,应该选择在甲店购买。
因为在甲店购买,可以获得5只免费的茶杯,而在乙店购买,需要付出更多的钱。
1.3.运动时的心跳速率通常与人的年龄有关,如果用 a 表示一个人的年龄,用 b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么 b = 0.8 × (220 - a)。
1) 正常情况下,一个14岁的少年在运动时所能承受的每分钟心跳的最高次数是 176 次。
2) 一个45岁的人运动10秒心跳的次数为22次,他没有危险。
因为他的最高心跳次数为 0.8 × (220 - 45) = 140,而他运动10秒的心跳次数为 22,远远低于最高心跳次数。
代数式和分式方程练习题一、代数式1. 计算下列代数式的值:(1) 3a 2b + 4c,其中a=2,b=3,c=1(2) (x+3)(x2),其中x=4(3) (m1)^2 (n+2)^2,其中m=5,n=32. 化简下列代数式:(1) 5a 3a + 2b 4b(2) (x+2)(x2) (x1)(x+1)(3) (a+b)^2 (ab)^23. 合并同类项:(1) 4x^2 3x + 2x^2 + 5x 7(2) 3a^3 2a^2 + 4a^3 5a^2 + 6a(3) 5m^2n 3mn^2 + 2m^2n 4mn^2二、分式方程1. 解下列分式方程:(1) $\frac{2}{x1} + \frac{3}{x+2} = 0$(2) $\frac{1}{x+3} \frac{2}{x4} = \frac{3}{x^2 x 12}$(3) $\frac{3}{x2} + \frac{4}{x+5} = \frac{7}{x^2 + 3x 10}$2. 化简下列分式方程:(1) $\frac{2x+4}{x+2} \frac{3x6}{x3} = 0$(2) $\frac{x+1}{x1} + \frac{x1}{x+1} = \frac{4}{x^21}$(3) $\frac{3x2}{2x+1} \frac{4x+3}{x2} = \frac{7}{x^2 x 2}$3. 求解下列分式方程组:(1) $\begin{cases} \frac{2}{x} + \frac{3}{y} = 7 \\\frac{1}{x} \frac{2}{y} = 4 \end{cases}$(2) $\begin{cases} \frac{3}{x+1} + \frac{4}{y2} = 5 \\ \frac{2}{x+1} \frac{3}{y2} = 1 \end{cases}$(3) $\begin{cases} \frac{4}{x3} + \frac{5}{y+2} = 6 \\ \frac{3}{x3} \frac{2}{y+2} = 2 \end{cases}$三、代数式的应用1. 实际问题应用题:(1) 小明买了a千克苹果,每千克b元,小华买了c千克香蕉,每千克d元,两人一共花了多少钱?(2) 一个长方形的长是a厘米,宽是b厘米,求它的面积和周长。
一、打折问题例1.商场为了促销,常用打折的办法,某种商品原零售价为M元,先后两次打折,第一次打八折,第二次打七折,两次打折后的零售价为元,比原价便宜元二、利润问题例2.某商店销售某种商品,今年的进货价比去年降低了P%,去年的利润率为m%,今年的售价保持不变,用代数式表示:(1)若去年的进货价为a元,求今年的进货价及利润率;(2)若今年的进货价为b元,求去年的进货价及今年的售价和利润率三、工程问题例3.如果a个人b天做c个零件,那么b个人用相同的速度做c个零件所需要的天数是()(A)2ac (B)2ca(C)2ca(D)2ac解:应选(A)四、储蓄问题例4.银行开办的教育储蓄免征利息税,一年期、三年期、六年期的定期存款利率分别为 2.26℅、2.70℅、2.88℅.小华的父母准备她六年后上大学的费用,决定现在就参加教育储蓄,他们准备存入10000元,下面有两种储蓄方式;(1)直接存一个6年期。
(2)先存一个3年期的,3年后将本息和自动转存下一个3年期.小华的父母不知选择哪一种储蓄方式获利较多.五、行程问题例5.一条山路长skm ,一个游人上山的速度是每小时akm ,下山的速度是每小时bkm ,则它的平均速度是( )(A )2a b +(B )2s a b+(C )s s s a b +(D )2s s s a b+ 一、填空题1.小丁期中考试考了a 分,之后他继续努力,期末考试比期中考试提高了b %,小丁期末考试考了_______分.2.人的头发平均每月可长1厘米,如果小红现在的头发长a厘米,两个月不理发,她的头发长为_______厘米.3.妈妈买了一箱饮料共a瓶,小丁每天喝1瓶,_______天后喝完.4.代数式(x+y)(x-y)的意义是___________.5.小明有m张邮票,小亮有n张邮票,小亮过生日时,小明把自己的邮票的一半作为礼物送给小亮,现在小亮有_______张邮票.4.一个两位数,个位是a,十位比个位大1,这个两位数是()A.a(a+1)B.(a+1)aC.10(a+1)aD.10(a+1)+a四、解答题1.小明今年x岁,爸爸y岁,3年后小明和爸爸的年龄之和是多少?2.小丁和小亮一起去吃冰糕,小丁花了m元,小亮花了n元,已知每个冰糕0.5元,小丁和小亮各吃了几个?(一)参考例题[例1]一种树苗的高度与生长年数之间的关系如下表所示:(树苗原高是100 cm)(1)填出第4年树苗可能达到的高度.(2)请用含a的代数式表示高度h.(3)用你得到的代数式求生长了10年后的树苗可能达到的高度.[例2]某电影院有20排座位,已知第一排有18个座位,后面一排比前一排多2个座位,请写出计算第n排的座位数,并求出第19排的座位数.(二)参考练习1.用代数式表示.(1)“x的5倍与y的和的一半”可以表示为_____.(2)南平乡有水稻田m亩,计划每亩施肥a 千克;有玉米田n亩,计划每亩施肥b千克,共施肥_____千克.(3)有三个连续的整数,最小数是m,则其他两个数分别是_____和_____.(4)全班总人数为y,其中男生占56%,那么女生人数是_____.2. 已知:ab a=≠-11,,求111 1+++a b的值。
代数式与应用题数与式考点1 有理数、实数的概念考点2 数轴、倒数、相反数、绝对值考点3 平方根与算术平方根.考点4 近似数和科学计数法考点5 实数大小的比较考点6 实数的运算考点7 乘法公式与整式的运算考点8 因式分解考点9 分式考点10二次根式注:1.因式分解的方法:提取公因式法、公式法、分组分解、十字相乘法、求根公式法:如果),0(02≠=++a c bx ax 有两个根x 1,x 2,那么)x x )(x x (a c bx ax 212--=++,等方法; 2. 分式的概念、性质,分式的约分、通分、混合运算。
(1))0(≠=m B A Bn Am (2)已知分式ba ,分式的值为正:a 与b 同号;分式的值为负:a 与b 异号;分式的值为零:a =0且b ≠0;分式有意义:b ≠0。
(3)零指数)0(10≠=a a (4)负整数指数 ).p ,0a (a 1a p p 为正整数≠=- (5)整数幂的运算性质上述等式中的m 、n 可以是0或负整数. 3. 平方根、立方根、算术平方根的概念,用根号表示数的平方根、立方根和算术平方根。
会求实数的平方根、算术平方根和立方根;平方根:若x 2 =a (a>0),则x 叫做a 的平方根,记为a ±。
①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;其中0≥a ,即除零以外a 表示正数。
4.二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。
掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
二次根式的性质①)0(≥a a 是一个非负数;②)0()(2≥=a a a ③)0,0(≥≥?=b a b a ab④)0,0(>≥=b a b a b a ⑤??<-=>==)0()0(0)0(||)(2a a a a a a a中考应用题列方程(组)解应用题是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多” 、“少” 、“增加” 、“减少” 、“快” 、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到.解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答” .1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4、“解”就是解方程,求出未知数的值.5、“验”就是验解,即检验方程的解能否保证实际问题有意义.6、“答”就是写出答案(包括单位名称).应用题类型:近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等.几种常见类型和等量关系如下:1、行程问题:基本量之间的关系:路程=速度×时间,即:vt s =.常见等量关系:(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程. (2)追及问题(设甲速度快):①同时不同地:甲用的时间=乙用的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程.②同地不同时:甲用的时间=乙用的时间-时间差;甲走的路程=乙走的路程.基本类型有① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
并且还常常借助画草图来分析,理解行程问题。
2、工程问题:基本量之间的关系:工作量=工作效率×工作时间.常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.经常在题目中未给出工作总量时,设工作总量为单位1。
3、增长率问题:基本量之间的关系:现产量=原产量×(1+增长率).4、百分比浓度问题:基本量之间的关系:溶质=溶液×浓度.5、水中航行问题:基本量之间的关系:顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度. 6、市场经济问题:基本量之间的关系:商品利润=售价-进价=商品标价×折扣率—商品进价;商品利润率=利润÷进价;利息=本金×利率×期数;本息和=本金+利息.商品售价=商品标价×折扣率7、和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
8、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
9、劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
10、比例分配问题:这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
11、数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)则这个三位数表示为:100a+10b+c 。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示。
12、增长率问题求解增长率问题的关键是正确理解增长率的含义.一般地,如果某种量原来是a ,每次以相同的增长率(或减少率)x 增长(或减少),经过n 次后的量便是(1)n a x +(或(1)n a x -).13、有关图形面积问题))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=- nn n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=?-+)(,)(),0(,复习题1、下列各式属于最简二次根式的是()A .225x +1 B.x y C.12 D.0.52、当1<x<="" +x="">A. -1B. 2x -1C. 1D. 3-2x3、已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( C ) A .a>2 B .a<2C .a<2且a ≠1D .a<-241.4、若关于x 的方程1011--=--m xx x 有增根,则m 的值是() A .3B .2C .1D .-15.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设月平均增长率为x ,则可列方程为() A .2 25(1)64x += B.225(1)64x -= C .264(1)25x += D .264(1)25x -=6.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是()。
A .x 2+130x-1400=0B .x 2+65x-350=0C .x 2-130x-1400=0D .x 2-65x-350=07、如果分式23273x x --的值为0,则x 的值应为.8、已知(x-2)2+|y-4|+6z -=0,则xyz 的值= .9、a 、b 在数轴上的位置如图所示,且a >b ,化简a a b b a -+--=10、抗“非典”期间,个别商贩将原来每桶价格a 元的过氧乙酸消毒液提价20%后出售,市政府及时采取措施,使每桶的价格在涨价后下降15%,那么现在每桶的价格是_____________元。
11.解下列方程(1)x 2+3=3(x +1) (2)3411x x-=-(3)化简求值112---a a a ,其中2=a12.如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?↑↓60cm13.在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?14、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?0ba</x。