代数方程应用题
- 格式:doc
- 大小:145.00 KB
- 文档页数:5
《数与代数-解方程应用题》一、选择题1.孙爷爷今年a 岁,张伯伯今年(20)a -岁,过x 年后,他们相差( )岁.A .20B .20x +C .20x -2.一个长方形的面积是x 平方米.它的宽是60米,周长是280米,下列方程正确的是( )A .60280x ÷=B .(60)2280x +⨯=C .60280x =D .(6060)2280x ÷+⨯=3.现在是下午3点整,再过( )分时针与分针第一次重合.A .25B .20C .18D .41611 4.食堂买来6袋大米,每袋50千克.吃了4天后,还剩下116千克.平均每天吃多少千克?列出方程错误的是( )解:设平均每天吃x 千克.A .4116506x +=⨯B .4506116x =⨯-C .5064116x ⨯-=D .1164506x -=⨯5.第一小学共有教师120人,男教师人数是女教师的12.求男教师有多少人.解:设男教师有x 人.下列方程正确的有哪些?( )①2120x x +=②11202x x +=③112012x =+④1112012x=+.A .①③B .②④C .①④D .②③6.一套课桌椅售价是420元,桌子的价格是椅子的43,椅子的价格是多少钱?错误的列式是( )A .设椅子的价格为x 元,列方程得:44203x x +=B .44:33=,342043⨯+C .44:33=,442043⨯+7.做一批零件,原计划每天生产40个,实际每天生产50个,结果提前5天完成,那么原计划生产的零件个数是( )A.1000 B.1200 C.1500 D.20008.一种农药,用药液和水按照质量比1:1500配制而成,如果现在只有3kg的药液,能配制成这种农药()kg.A.4500 B.4503 C.5009.学校体育室购进一批足球与篮球共360个,其中购进足球个数的25%比购进位篮球个数的1还多20个,学校体育室购进足球()个.3A.120 B.160 C.200 D.240二、填空题1.每张课桌的价钱是m元,椅子比课桌便宜170元.那么,170m-表示的是,m m+-表示.如果3张桌子和8把椅子的价钱相等,将这一关系用(170)含有字母的等式表示出来是.,如果设未2.某校32位男生进行跳远测试,其中合格人数是未合格的人数的53合格人数是a人,那么合格人数是人,并在括号内列出等量关系.3.昆虫爱好者发现某地蟋蟀叫的次数与气温之间有如下近似关系:73[=÷+表h t h示当时的气温(C)︒,t表示蟋蟀每分钟叫的次数].如果蟋蟀每分钟叫70次,当时的气温大约是C︒;当气温到达30C︒时,蟋蟀每分钟叫次.4.(1)如图中的数量关系可以表示为:3⨯=.4(2)写成除法算式是:3÷=.4(3)根据比的的意义可以表示为::A B=:.5.世界杯足球赛用的足球,白色皮共20块,比黑色皮的2倍少4块,共有多少块黑色皮?要用方程解答,所用的等量关系是.6.某商品进价为200元,按标价的九折卖出后,利润率为35%,求标价.设标价为x,列出方程.7.在比例尺1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是千米.8.小王、小李沿着400米的环行跑道跑步,他们同时从同一地点出发,同向而行.小王每分钟跑280米,小李每分钟跑240米,经过x分钟小王追上小李.列出的方程是.9.小丁丁打算在限期里看完一本书,如果每天看20页,那么还会剩下16页来不及看:如果每天看25页,那么最后一天只需看6页,这本书共有多少页?解:设丁丁原来打算在限期x天里看完.方程:.10.用方程解:果园里桃树和梨树一共有320棵.已知桃树的棵数比梨树棵数的3倍少40棵.果园里桃树和梨树各有棵.(按桃树、梨树的顺序填写)11.操场边一棵小树的高度是1.5米,影子长度是0.8米,一棵大树的影子长度是4.8米,这棵大树的高度是米.12.文具店以每枝10元的批发价购进一批钢笔,加上批发价的40%(毛利润)作时获毛利240元.这批钢笔共有枝,为零售价出售,当卖出这批钢笔的34卖完一共可获毛利元.三、按要求完成下面各题1.只列方程不解答.(1)兴福服装公司计划做796套服装,已经做了12天,平均每天做28套.剩下的平均每天做20套,还要多少天才能做完?(2)华伯伯今年47岁,林林今年3岁.多少年后华伯伯的年龄是林林年龄的5倍?(3)王师傅计划加工一批零件,如果每天加工50个,则可以提前2天完成任务;如果每天加工40个,则比计划延迟3天才能完成任务.王师傅计划用多少天完成任务?(4)如图,一个长方体的体积是3896cm,如果把它沿高截成两部分,刚好变成一个较小的长方体和一个正方体.已知这个较小长方体的高是6cm.那么.正方体的棱长是多少厘米?2.看图列方程,并求出方程的解四、解决问题1.服装厂加工一批服装,原计划每天加工250件,18天完成.实际每天比原计划多加工20%,实际多少天可以完工?(用方程解)2.学校合唱队学生人数是乒乓球队的3倍,如果从合唱队调24人到乒乓球队,两个队的学生人数就正好相等.原来两个队各有学生多少人?(列方程解)3.某市为迎接全国卫生文明城市评比涌动,城市建筑工人日夜奋斗在自己的工作岗位上.(1)一条城市道路需要铺上沥青,原计划每天铺0.4千米,需要15天才能完成,实际只用了8天就完成了铺路任务,实际每天铺路多少千米?(2)某工地上要运走一堆约100吨重的建筑垃圾,甲、乙两车各运了5趟,正好把这堆垃圾运完.已知甲车每趟运12.5吨,则乙车每趟运多少吨?(列方程解答)4.甲乙两列火车从相距980千米的两地同时出发相对开出,甲车每小时行80,乙车每小时行多少千米?(解方程)千米,2.8小时两车相距全程的355.一艘轮船从甲港开往乙港,去时顺水,每小时行驶30千米,15小时到达,返回时逆水,速度是去时的80%,返回时用了多少小时?(用比例解答)6.(列方程解应用题)小明读一本书,已读与未读的页数比是1:5,如果再读30页,则已读和未读的页数为3:5.这本书共有多少页?7.妈妈给特困户李奶奶家送去一袋米.他们家第一周吃了40%,第二周吃了12千克,还剩6千克.这袋米原来有多少千克?(列方程解)答案一、选择题1.A .2.D .3.D .4.D .5.A .6.C .7.A .8.B .9.D .二、填空题1.一把椅子的价钱,一张课桌和一把椅子一共的价钱.38(170)m m =-. 2.53a ,合格人数=未合格的人数53⨯.3.13、189.4.A 、B 、B 、A 、4、3.5.黑色皮块数24⨯-=白色皮块数.6.90%200(135%)x =⨯+.7.760.8.(280240)400x -⨯=.9.201625(256)x x +=--.10.230棵、90.11.9.12.80,320.三、按要求完成下面各题1.解:(1)设还需要x 天才能做完,列方程为: 281220796x ⨯+=(2)设x 年后华伯伯的年龄是林林年龄的5倍,列方程为: 5(3)47x x +=+(3)设计划x 天加工完这批零件,列方程为: 50(2)40(3)x x ⨯-=⨯+(4)设正方体的棱长为x 厘米,有236896x x +=2.解:(1)设兔子的质量是x 千克,2.8 5.17x +=2.8 2.8 5.17 2.8x +-=-2.37x =答:兔子重2.35千克.(2)设长方形的宽为x 厘米,(16)248x +⨯=32248x +=216x =8x =答:长方形的宽是8厘米.(3)设音乐组有x 人,则美术组有3x 人, 388x x +=488x =22x =答:音乐组有22人.(4)设每盒有x 支,3440x +=336x =12x =答:每盒有12支.四、解决问题1.解:设实际x 天可以完工,250(120%)25018x ⨯+⨯=⨯, 6250250185x ⨯⨯=⨯,3004500x =,15x =.答:实际15天完工.2.解:设乒乓球队有x 人,则合唱队就有3x 人, 32424x x -=+248x =24x =24372⨯=(人)答:原来乒乓球队有24人,合唱队就有72人.3.解:(1)0.4158⨯÷68=÷0.75=(千米)答:实际每天铺路0.75千米.(2)设乙车每趟运x 吨,则12.51005x +=÷12.520x +=12.512.52012.5x +-=-7.5x =答:乙车每趟运7.5吨.4.解:设乙车每小时行x 千米,由题意得,380 2.8 2.8980(1)5x ⨯+=⨯- 224 2.8392x +=2.8392224x =-2.8168x =60x =答:乙车每小时行60千米.5.解:设返回时用了x 小时.3080%3015x ⨯⨯=⨯24450x =18.75x =答:返回时用了18.75小时.6.解:11156=+, 33358=+; 设总页数是x 页,由题意得: 31()3086x -= 53024x = 53024x =÷144x =答:这本书一共有144页.7.解:设这袋大米x 千克. 40%126x x --=, 0.6126x -=,0.61212612x -+=+, 0.618x =,0.60.6180.6x ÷=÷, 30x =答:原来有30千克.。
2.据研究,当洗衣机中洗衣粉的含量在0.2%—5%之间时,衣服的洗涤效果较好,因为这时表面活性较大。
现将4.94KG的衣服放入最大容量为15KG的洗衣机中,欲使洗衣机中洗衣粉的含量达到0.4%,那么洗衣机中需要加入多少千克水,多少匙洗衣粉?(一匙洗衣粉约为0.02KG,假设洗衣机以最大容量洗涤)3.某商品的成本为每件200元,售价比成本高五成,两次打折仍赚43元,则每次打___折。
二、工程问题1、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问:计划每天加工服装多少套?设计划每天加工x套,则根据题意可得方程为_____________________。
2、为帮助灾区人民重建家园,某校学生积极捐款。
已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人,则该小区第二次捐款的人数是__________________________。
3、在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合作24天可完成。
(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在70天完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?三、行程问题1、在四川汶川抗震救灾中,某抢险地段需进行爆破,操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域,若导火线的燃烧速度是1.2厘米/秒,操作人员跑步速度是5米/秒。
为保证操作人员的安全,导火线的长度要超过( )厘米。
2、甲、乙两站相距30千米,根据火车运行时刻表,火车按规定的速度从甲站驶向乙站,当火车行驶到一半路程时,五、“商品”问题1、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又用11000元购进该品种苹果,但这次的进货价比试销时进价每千克多了0.5元,购进苹果数量是试销时的2倍,求试销时该品种苹果的进货价是每千克多少元,设试销时该品种苹果的进货价是每千克x元,根据题意列方程得_________________________。
初中数学应用题归纳整理1 方程应用题方程应用题是通过列代数方程来解决实际问题的一类题型,它几乎贯穿于初中代数的全部。
初中代数的方程应用题包括列一元一次方程、一次方程组、一元二次方程、分式方程来解的应用题。
方程应用题的解题步骤可用六个字概括,即审审题、设设未知数、列列方程、解解方程、检检验、答。
考试内容多结合当前一些热点话题,如储蓄问题、人均收入问题、环保问题、商品打折问题等。
例1、为了鼓励节约用水,某地按以下规定收取每月水费:如果每月每户用水不超过25 吨,那么每吨水费按1.25 元收费;如果每月每户用水超过25 吨,那么超过部分每吨水费按1.65 元收费。
若某用户五月份的水费平均每吨1.40 元,问该用户五月份应交水费多少元?例2、国家规定个人发表文章或出书获得稿费的纳税计算方法是:①稿费不高于800 元的不纳税;②稿费高于800 元又不高于4000 元的应交超过800 元那一部分稿费的14%的税;③稿费高于4000 元的应交全部稿费的11%的税。
一人曾获得一笔稿费,并交个人所得税280元,算一算此人获得这笔稿费是多少元?2 不等式应用题列不等式或不等式组解决实际问题,是近年来中考命题的新热点,我们把这类试题称为不等式应用题。
这个问题中通常带有“不少于”、“不多于”、“不超过”、“最多”、“至少”等关键词,还常常用到求不等式整数解问题。
例:某市为了改善投资环境和居民生活环境,对旧城区进行改造。
现需要A、B 两种花砖共50 万块,全部由某砖瓦厂完成。
该厂现有甲种原料180 万千克,乙种原料145 万千克,已知生产1 万块A 砖,用甲种原料4.5 万千克,乙种原料1.5 万千克,造价1.2 万元;生产1 万块B砖,用甲种原料2 万千克,乙种原料5 万千克,造价1.8 万元。
①利用现有原料,该厂是否能按要求完成任务?若能,按A、B 两种花砖的生产块数,有哪几种生产方案?请你设计出来以万块为1 个单位且取整数。
用方程解决问题应用题用方程解决问题是数学的一种重要应用。
方程是描述数学关系的一种方式,它可以帮助我们理解和解决各种实际问题。
在本文中,我们将探讨一些常见的用方程解决问题的案例,并详细解释如何建立和求解这些方程。
第一部分:代数方程的应用问题1:购买水果假设你去市场购买了苹果和橙子,其中每个苹果的价格为x元,每个橙子的价格为y元。
你购买了5个苹果和3个橙子,总花费为20元。
现在,我们需要建立一个方程来计算每个水果的价格。
解答:令方程为5x + 3y = 20,其中x表示苹果的价格,y表示橙子的价格。
通过观察这个方程,我们可以发现,当x = 2和y = 4时,方程成立。
因此,每个苹果的价格为2元,每个橙子的价格为4元。
问题2:年龄之谜现在我们来考虑一个更复杂的问题。
假设有一个父子年龄之和为36岁的问题,父亲的年龄是儿子年龄的三倍。
我们需要建立一个方程,找到父亲和儿子的实际年龄。
解答:设父亲的年龄为x岁,儿子的年龄为y岁。
根据问题的描述,我们可以得到两个方程:x + y = 36 (年龄之和为36岁)x = 3y (父亲的年龄是儿子年龄的三倍)将第二个方程代入第一个方程,得到:3y + y = 364y = 36y = 9将y = 9代入第二个方程,可以求得:x = 3 * 9x = 27因此,父亲的年龄是27岁,儿子的年龄是9岁。
第二部分:几何方程的应用问题3:等腰三角形的高度假设我们有一个等腰三角形,其中底边的长度为x,斜边的长度为y。
我们需要建立一个方程,计算这个等腰三角形的高度。
解答:根据等腰三角形的性质,高度将从中点垂直于底边画出,并且它将把底边划分为两个相等的部分。
因此,我们可以将等腰三角形的高度表示为x / 2。
根据勾股定理,我们可以得到另一个方程:y = √((x / 2)^2 + h^2),其中h表示等腰三角形的高度。
解方程组:将x / 2代入y的方程,得到:y = √((x / 2)^2 + (x / 2)^2)y = √(x^2 / 4 + x^2 / 4)y = √(x^2 / 2)y = x / √2因此,等腰三角形的高度可以表示为x / 2或x / √2,具体取决于问题的要求和条件。
19 怎样列方程解应用题一、与方程有关的应用题数学家牛顿讲过:要解答一个问题,里面含有数量间的抽象关系的,只要把题目由日常的语言译成代数的语言就行了.所以布列方程的一般步骤是:(1)把日常语言翻译成代数关系式;(2)寻找等量关系,列成一个等式;(3)解方程,求得解; (4)验算检验实验意义.例1 希腊数学家丢番图的墓碑有如下文字:“过路人,这儿埋着丢番图的骨灰,下面的数目可以告诉你他一生寿命究竟有多长.他生命的六分之一是幸福的童年.再活了十二分之一,颊上长起了细细的胡须.丢番图结了婚,可是还不曾有孩子,这样又度过一生的七分之一.再过五年,他得了头胎儿子,感到很幸福.可是命运给这孩子在这世界上的光辉灿烂的生命只有他父亲的一半,打从儿子死了以后,这老头子在深深的悲痛中活了四年,也结束了尘世的生涯.”请您计算丢番图活了多少岁? 解 我们采取对照方法把日常语言翻译成代数语言,列出表1.4257126+++++=xx x x x 解之得x=84.其中相等关系是整个年龄等于各阶段年数之和.通过例1只是说明列方程的一般方法,有些方程要难列得多.我们看几个古典问题,例2~例6的难点在于寻求相等关系.例2 一片草原上的麦草,到处长得一样密、一样快,70头牛在24天内吃完,30头牛在印天内吃完,几头牛在96天内吃完?解 设原有的麦草为a ,每天长出的麦草为x ,y 头牛在96天内吃完.因为l 头牛l 天吃草的量相等,根据题设得方程组yxa x a x a 9696603060247024+=⨯+=⨯+解这个方程组,从方程,603060247024⨯+=⨯+xa x a 解得480a x = 代入方程yxa x a 9696247024+=⨯+并化简得方程21ay=420a因为a≠0,方程两边同除21a 得y=20. 答:20头牛在96天内吃完.例3 牛顿问题:“甲、乙、丙三块草地长得一样密、一样快,甲地面积2h 313m 可供l2头牛吃4周;乙地面积210hm 可供21头牛吃9周;丙地面积,242hm 可供几头牛吃l8周?”解 设每公顷原有的麦草为a ,每公顷每周生长的草为x ,丙地可供Y 头牛吃18周.根据题设得方程组yx a x a x a 18)18(24921)9(10412)4(313+=⨯+=⨯+解这个方程组,从方程921)9(10412)4(313⨯+=⨯+x a x a 解得 12a x =代入方程,18)18(24921)9(10yx a x a +=⨯+解得36=y答:丙地可供36头牛吃18周.例4 马跑5步的时间内,狗跑6步;狗跑4步的距离与马跑7步的距离相同,马已跑出5.5 km 时,狗开始追它,马再跑多远,狗可追及马?解 设马再跑xkm 狗可追及马,在这一时间内,狗共跑(x+5.5)km ,由题设狗跑4步的距离与马跑7步的距离相同,这就是说,狗跑l 步的距离是马跑1步距离的47倍;又题设马跑5步的时间,狗跑6步,马跑l 步的时间是狗跑1步时间的56倍,所以,在马跑l 步的时间内,狗跑的距离是马跑l 步距离的 )5647(⨯倍,由此得方程 )5.5(:)5647(:1+⨯=x x解这个方程,得x=5.答:马再跑5 km ,狗可以追及马.例5 甲对乙说:“我像你这样大岁数的那年,你的岁数等于我今年岁数的一半,当 你到我这样大岁数的时候,我的岁数是你今年岁数的2倍少7岁.”两人现年各几岁?解 设甲现年x 岁,乙比甲小Y 岁,则乙现年是(x 一Y)岁.当甲像乙现年这样大的岁数的那年,乙的岁数应该是(x 一y )一y ;当乙像甲现年这样大的岁数的那年,甲的岁数应该是x+y,由此得方程组⎪⎩⎪⎨⎧--=+=--7)(22)(y x y x x y y x 解这个方程组,得x=28,y=7,x 一y=21答:甲现年28岁,乙现年21岁.例6 时速4 km 的A 追赶时速3 km 的B ,两人相距0.5 km 时,有一个苍蝇从A 的帽子上开始来回在两人中间飞,直飞到A 追及8为止,若苍蝇时速lo km ,则苍蝇飞了多少公里? 解 设苍蝇飞了xkm ,根据苍蝇飞的时间等于A 追及B 的时间,得方程10345.0x=- 解这个方程,得x=5. 答:苍蝇共飞了5 km .二、与不等式有关的应用题有些应用问题列关系式并不困难,而求解方程,往往需要对不定方程进行讨论或应用不等式的技巧,甚至直接应用算术、图解法或逻辑推理,例7、例8主要是上述类型的问题.例7一群学生搬一堆砖,每人搬k 块,还剩l4块;若每人搬9块,最后一人只搬6块,求学生数. 解 设有学生x 人,依题意列方程h+14=9x 一3,即 (9一k)k=17 ① 讨论 从方程看,若(1)k=9时,①无解,应用题无解;(2)k>9时,,0917<-=k x 方程的解不合题意,应用题无解; (3)k<9时,,0917>-=kx 方程的解k 为正整数,x 为正整数,实验知k 只可能取8,相应的x 值为l7,故所求学生数是l7人.例8 一个布袋中装有三种不同颜色但大小相同的小球,红色小球上标有数字l ,黄色小球上标有数字2,蓝色小球上标有数字3.(1)小明从口袋中摸出l0个小球,它们的数字和是21,试问:小明摸出的小球中至多有几个是红色的? (2)小军想从袋中摸出l0个有同样颜色的小球,试问:他至少要摸出多少个球,才能保证至少有10个球是具有相同颜色的?解 (1)设摸出x 个红球、y 个黄球、z 个蓝球,则⎩⎨⎧=++=++②①2132110z y x z y x ①×3一②得2x+y =9,即y=9—2x ,y 是非负整数,所以x 最多为4.(2)按最坏方面考虑,假设一堆球中每种颜色的球都少于10个,那么每种颜色的球最多有9个,这一堆球最多应有3×9=27个球,再增加一个球就有l0个同色球了,故至少一次要摸28个球,就能绝对保证至少有l0个同色球.例9 某缝纫社有甲、乙、丙、丁四个小组,甲组每天能缝制8件上衣或l0条裤子,乙组每天能缝制9件上衣或l2条裤子,丙组每天能缝制7件上衣或ll 条裤子,丁组每天能缝制6件上衣或7条裤子,现在上衣和裤子要配套缝制(每套为一件上衣和一条裤子),问7天中这四个小组最多能缝制多少套衣服?解 甲、乙、丙、丁四组每天缝制上衣与裤子的数量之比分别是,117,129,108⋅76对于任意两个组,若A 组对应分数是,11b a B 组对应分数是22b a 且,2211b a b a >A 组做t 条裤子,就要少做t b a11件上衣.这些上衣让B组做,要花211a b t a 天时间,这些时间B 组可做)(.22112211t t b a b a b a b ta >=条裤子,因此裤子不如由B 组来做更好.从而,要满足配套的前提下,A 组应尽量多做上衣,而B 组应尽量多做裤子.由于,11712910876>>>这说明丁组生产上衣的效率最高,丙组生产裤子的效率最高.于是我们让丁组7天都生产上衣,丙组7天都生产裤子,设甲组生产上衣x 天,生产裤子(7一x)天,乙组生产上衣y 天,生产裤子(7一y)天,则四个组7天共生产上衣6×7+8x+9y,生产裤子11×7+10(7一x)+12(7一y),依题意,有 42+8x+9y=77+70—10x+84—12y 整理得6x+7y=63即①x y 769-= 令W=42+8x+9y ,把①的结果代入w 中,得x x x W 72123)769(9842+=-++= 因为0≤x≤7,x 为整数,所以当x=7时,Wmax=125.这表明,安排甲、丁组生产上衣7天,丙组生产裤子7天,乙组生产上衣3天、裤子4天时,四个组最多可生产制服125套.例10 在一次数学竞赛中共出了A ,B ,C 三道题,在参赛的所有学生中,至少解出一题者共25人.在不能解出A 题的学生中,能解出B 题的人数是能解出C 题的人数的2倍;在能解出A 题的学生中,只能解出这一题的人数比至少还能解出另一题的人数多l 人.如果只能解出一题的学生中有一半不能解出A 题,问只能解出B 题的学生有几人?解 设x 为只能解出A 题的人数,y 为只能解出B 题的人数,Z 为只能解出C 题的人数.v 为只解出A ,B两题的人数,w 为只解出A ,C 两题的人数,u 为只解出B ,C 两题的人数,9为同时解出三道题的人数(图)依题意,在没有解出A 题的人数中,解出B 题的人数是解出C 题的2倍.即①)(2z u u y +=+另外②1+++=w t v x ③z y x +=④25=++++++t u w v z y x由①得⑤u z y +=2由③及⑤得⑥u z z y x +=+=3由④,③,②得⑦2513=-+u x将⑥代入⑦得⑧2649=+u zz z z ,3927926269=<≤⇒≤取0,1,2三个非负整数值. 当Z=0时,4u=26,不能成立. 当Z=1时,4u=26—9=17,417=u 也不能成立,所以只能是Z =2.此时代入⑧得u=2,y=6,于是x=8,v+w+t=7,代入原题检验合于题意要求.因此,只解出B 题的学生是6个人.。
线性代数应用题总结分类及经典例题本文旨在总结线性代数中的应用题,并提供一些经典例题。
以下是对应的分类和例题:1. 线性方程组例题1:已知线性方程组如下:$$\begin{cases}2x + y - z = 5 \\x - 3y + 2z = -4 \\3x + 4y - z = 6 \\\end{cases}$$求解以上线性方程组。
例题2:已知线性方程组如下:$$\begin{cases}2x + 3y - z = 4 \\x - 2y + 3z = -1 \\3x + 4y - 2z = 7 \\\end{cases}$$求解以上线性方程组。
2. 矩阵与向量例题1:已知矩阵$A=\begin{bmatrix}1 &2 &3 \\4 &5 &6 \\\end{bmatrix}$,向量$\mathbf{b}=\begin{bmatrix}2 \\-1 \\\end{bmatrix}$,求解方程组$A\mathbf{x}=\mathbf{b}$。
例题2:已知矩阵$A=\begin{bmatrix}2 & -1 \\3 &4 \\\end{bmatrix}$,向量$\mathbf{b}=\begin{bmatrix}1 \\2 \\\end{bmatrix}$,求解方程组$A\mathbf{x}=\mathbf{b}$。
3. 线性变换例题1:已知线性变换$T$将向量$\mathbf{v}=\begin{bmatrix}2 \\3 \\\end{bmatrix}$映射为$\mathbf{w}=\begin{bmatrix}5 \\-1 \\\end{bmatrix}$,求线性变换$T$的矩阵表示。
例题2:已知线性变换$T$将向量$\mathbf{v}=\begin{bmatrix} 1 \\-2 \\\end{bmatrix}$映射为$\mathbf{w}=\begin{bmatrix}3 \\4 \\\end{bmatrix}$,求线性变换$T$的矩阵表示。
解方程应用题(精选.)1、甲车每小时行31千米,乙车每小时行44千米。
经过多少时间后两车相距300千米?甲、乙两辆汽车同时从某地相背而行,甲车每小时行31千米,乙车每小时行44千米。
设两车相遇时间为t,则甲车行驶距离为31t,乙车行驶距离为44t,两车相距距离为300千米。
根据题意可得方程31t+44t=300,解得t=4.所以经过4小时后两车相距300千米。
2、甲队每天挖4米,乙队每天挖3米。
经过多少天能把隧道挖通?甲、乙两个工程队要共同挖通一条长126米的隧道,两队从两头分别施工。
设甲队用x天挖通隧道,则乙队用x-1天挖通隧道。
根据题意可得方程4x+3(x-1)=126,解得x=21.所以需要21天才能把隧道挖通。
3、学校音乐小组和美术小组共有140人,音乐小组的人数是美术小组的6倍。
美术小组有多少人?设美术小组有x人,则音乐小组有6x人。
根据题意可得方程x+6x=140,解得x=20.所以美术小组有20人。
4、哥哥每分步行80米,弟弟骑自行车以每分180米的速度到体育馆后立刻返回,途中与哥哥相遇,这时哥哥走了几分钟?兄弟两个人同时从家里到体育馆,路长1300米。
设哥哥走了t分钟,则弟弟骑车的时间为t/2分钟。
根据题意可得方程80t+180(t/2)=1300,解得t=8.所以哥哥走了8分钟。
5、XXX买了117个水果,制作精美小礼包,每个小朋友分到3个水果,这些水果可以分给几个小朋友?117个水果可以分成39个小礼包,每个小礼包里有3个水果。
所以这些水果可以分给39个小朋友。
6、煤场上午运来煤11.5吨,下午又运来了一些,一天共运来煤24.3吨,下午运来多少吨?设下午运来的煤量为x吨,则上午运来的煤量为11.5吨。
根据题意可得方程11.5+x=24.3,解得x=12.8.所以下午运来的煤量为12.8吨。
7、三个连续的奇数的和是57,中间的数是几?设三个连续的奇数分别为2n-1、2n+1、2n+3,则它们的和为6n+3.根据题意可得方程6n+3=57,解得n=9.所以中间的数是2n+1=19.8、钢琴的黑键有48个,比白键少26个,白键有多少个?设白键有x个,则黑键有x-26个。
解方程应用题及答案解方程应用题及答案解方程是数学考试中必考的内容之一,那么,下面是小编给大家整理收集的解方程应用题及答案,供大家阅读参考。
解方程应用题及答案:1、A有书的本数是B有书的本数的3倍,A、B两人平均每人有82本书,求A、B两人各有书多少本。
解:设B有书x本,则A有书3x本X+3X=82×22、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.解:设下层有书X本,则上层有书3X本3X-60=X+603、有A、B两缸金鱼,A缸的金鱼条数是B缸的一半,如从B缸里取出9条金鱼放人A缸,这样两缸鱼的条数相等,求A缸原有金鱼多少条.解:设B缸有X条,则A缸有1/2X条X-9=1/2X+94、汽车从A地到B地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求AB 两地的距离.解:设计划时间为X小时60×(X-1)=40×(X+1)5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?解:设四年级种树X棵,则五年级种(3X-10)棵(3X-10)-X=626、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.解:设原计划生产时间为X天40×(X+6)=60×(X-4)7、A仓存粮32吨,B仓存粮57吨,以后A仓每天存人4吨,B 仓每天存人9吨.几天后,B仓存粮是A仓的2倍?解:设X天后,B仓存粮是A仓的2倍(32+4X)×2=57+9X8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?解:设直尺每把x元,小刀每把就是(1.9—x)元4X+6×(1.9—X)=99、A、B两个粮仓存粮数相等,从A仓运出130吨、从B仓运出230吨后,A粮仓剩粮是B粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?解:设原来每个粮仓各存粮X吨X-130=(X-230)×310、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.解:设两人各加工X个零件X/(50-40)=X/50+5-111、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?解:设橘子每千克X元,则苹果每千克(X+2.2)元2.5×(X+2.2)+2X=13.612、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?解:设钢笔每支X元,则圆珠笔每支2X/34X+9×2X/3=2413、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.解:设十位上数字为X,则个位上的数字为2X,这个原两位数为(10X+2X)10×2X+X=(10X+2X)+3614、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.解:设个位数字为X,则十位数字为(X-1)X+(X-1)=[X+10×(X-1)] ×0.215、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?解:设现在每只盒子中各有x个球,原来各盒中球的个数分别为(x—2)个、(x+2)个、(x÷2)个、2x个(x—2)+ (x+2)+ (x÷2)+ 2x=4516、25除以一个数的2倍,商是3余1,求这个数.解:设这个数为X(25-1)÷2X=317、A、B分别从相距18千米的A、B两地同时同向而行,B在前A在后.当A追上B时行了1.5小时.B车每小时行48千米,求A车速度.解:设A车速度为X小时/小时(X-48)×1.5=1818、A、B两车同时由A地到B地,A车每小时行30千米,B车每小时行45千米,A车先出发2小时后B车才出发,两车同时到达B 地.求A、B两地的距离.解:设A、B两地的距离为X千米(X-30×2)/30=X/4519、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.解:设师傅每小时加工X个零件6X=12×(3+6)20、有A、B两桶油,A桶油再注入15升后,两桶油质量相等;如B桶油再注人145升,则B桶油的质量是A桶油的3倍,求原来两桶油各有多少升.解:设A桶原来有X升油,则B桶原来有(X-15)升油X+15+145=3X21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的'平均工资多30元.求细木工每人得多少元.解:设细木工每人得X元(200×6+X)/(6+1)=X-30如何解方程应用题?列方程解答应用题的步骤①弄清题意,确定未知数并用x表示;②找出题中的数量之间的相等关系;③列方程,解方程;④检查或验算,写出答案。
初中数学代数问题应用题复习
初中数学代数是数学的一个重要分支,也是应用广泛的数学工
具之一。
掌握代数问题的解题方法,对于学生在数学研究中具有重
要的意义。
本文档将为初中生提供一些代数问题应用题的复,帮助
他们巩固和加深对代数问题的理解和应用。
1. 一元一次方程
问题1
某商店进行促销活动,打折后一本书的价格是原来的三分之一。
如果原价格是18元,现在的价格是多少?
问题2
某电子游戏市场价格为每部游戏50元,某次折扣活动中,每
部游戏降价10元出售。
小明购买了5部游戏,他支付的总金额是
多少?
2. 一元二次方程
问题1
某运动场地的长方形场地的长是宽的3倍,周长为28米。
求
场地的面积和长、宽分别是多少?
问题2
一架火箭在空中以初速度40米/秒竖直向上发射,经过多少秒后,火箭的高度达到最高点?
以上是一些代数问题应用题的复内容,通过解答这些问题,学
生们可以巩固对代数概念和解题方法的理解,并运用到实际问题中。
希望这些复题能够帮助大家提高数学能力,取得更好的成绩。
如果您还有其他问题或需要更多的复习题,请随时告知。
一元二次方程应用题练习应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
2、若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是3、如果012=-+x x ,那么代数式7223-+x x 的值4、五羊足球队举行庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?5、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?6、将一条长20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
小学数学练习题小学生代数方程组的实际应用题小学数学练习题小学生代数方程组的实际应用题在我们日常生活中,代数方程组的实际应用十分广泛。
从小学阶段开始,我们就开始接触一些简单的代数方程组题目,这些题目旨在帮助我们理解代数方程组的概念,并能够将其应用到实际问题中去。
本文将通过几个具体的例子,来展示小学数学中代数方程组的实际应用。
例子一:鸡兔同笼问题小明养了一些鸡和兔子,共计50只,它们的总脚数为120只。
现在要求找出鸡和兔子的数量各是多少?解析:假设鸡的数量为x,兔子的数量为y。
根据题意,我们可以得到两个方程:x + y = 50 (方程1)2x + 4y = 120 (方程2)我们可以根据方程1,将x用y的表达式表示出来,然后代入方程2,从而得到y的值。
进一步计算可得x的值,从而得到鸡和兔子的具体数量。
例子二:图书馆的书籍分类某图书馆有A、B、C三个类别的书籍,其中A类书籍的总数是B类书籍总数的3倍,C类书籍的总数是B类书籍总数的4倍。
如果A、B、C三类书籍的总数加起来为290本,求A、B、C三类书籍的具体数量。
解析:假设B类书籍的数量为x,根据题意,A类书籍的数量为3x,C类书籍的数量为4x。
根据题目所给的总数,我们可以得到一个方程:3x + x + 4x = 290 (方程3)解方程3,我们可以计算出x的值,进而得到A、B、C三类书籍的具体数量。
通过以上两个例子,我们可以看到代数方程组在解决实际问题中的应用。
通过设置未知数和方程,我们可以建立一个数学模型来描述问题,并通过求解方程组,得到未知数的具体值。
这种方法不仅简单高效,而且还可以应用到各个领域中。
比如说,在物理学中,我们可以通过代数方程组来描述物体的运动状态;在经济学中,我们可以通过代数方程组来解决生产和消费的平衡问题。
要在小学阶段理解和应用代数方程组,首先需要掌握基本的代数运算和方程式的求解方法。
我们可以通过大量的练习题来加深对于代数方程组的理解,并熟练掌握解题技巧。
解答数字代数方程应用题数字代数方程是数学中常见的问题类型,它涉及到未知数与已知数之间的关系。
解决这类问题需要运用代数方程的知识和解题技巧。
本文将通过几个实际应用题来解答数字代数方程,并提供相应的解题思路和步骤。
1. 小明和小红一起去游乐园玩,小红乘坐过山车的费用是小明的2倍,小明乘坐旋转木马的费用是小红的3倍,二人一共花费了120元,请问小红乘坐过山车的费用是多少?解题思路:设小红乘坐过山车的费用为x元,则小明乘坐过山车的费用为2x元。
根据题目可知小明乘坐旋转木马的费用为3x元。
根据题意可列出方程:2x + 3x = 120。
解题步骤:将方程简化为5x = 120。
解方程得到x = 24。
因此,小红乘坐过山车的费用为24元。
2. 某商店的商品原价为x元,经过打折后降价了20%,打折后的价格为96元,请问该商品的原价是多少?解题思路:设商品的原价为x元,根据题目可知打折后的价格为原价的80%。
根据题意可列出方程:x * 80% = 96。
解题步骤:将方程简化为0.8x = 96。
解方程得到x = 120。
因此,该商品的原价为120元。
3. 某公司员工的基本工资为x元,根据工龄奖励规定,每工作1年增加100元,某员工工作y年后的总工资为550元,请问员工的基本工资是多少?解题思路:设员工的基本工资为x元,根据题目可知总工资减去工龄奖励后的部分为基本工资。
根据题意可列出方程:x + 100y = 550。
解题步骤:将方程简化为x = 550 - 100y。
因此,员工的基本工资为550 - 100y元。
通过以上的应用题解答,我们可以发现解决数字代数方程应用题的关键是理解题目的意思,建立正确的方程,然后使用合适的方法进行求解。
总结起来,解答数字代数方程应用题的步骤如下:1. 理解题目的意思,明确未知数与已知数之间的关系;2. 建立对应的方程;3. 简化方程,使其为最简形式;4. 解方程,求解未知数的值;5. 根据题目需求,得到最终的解答。
代数方程的应用题练习100一、选择题1.如果关于x 的方程m x =+-312没有实数根,那么m 的取值范围是( )(A )m ≥0; (B )m ≥3; (C)m <0 ; (D)m <3.2.等式29x -=x +3·x -3成立的条件是 ( )(A )x ≤3; (B )x ≥3; (C )x ≥-3; (D )-3≤x ≤3.3.打印一份稿件,甲需要a 小时,乙需要b 小时,甲、乙两人共同打印这份稿件需要的时间是( )(A )2b a +小时; (B )ab b a +小时; (C )b a ab +小时; (D )ba +2小时. 4.某市为发展教育事业,加强了对教育经费的投入,2007年投入3000万元,预计2009年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )(A )23000(1)5000x +=; (B )230005000x =;(C )23000(1)5000x +=%; (D )23000(1)3000(1)5000x x +++=.5.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,为求二月、三月平均每月的增长率是多少,可设平均每月增长的百分率为x ,根据题意,列出的方程是( )(A ) 50(1+x )2=175 ; (B )50+50(1+x )2=175;(C )50(1+x )+50(1+x )2=175; (D )50+50(1+x )+50(1+x )2=175 .6.某景区有一景点的改造工程要限期完工.甲工程队独做可提前1天完成,乙工程队独做要误期6天.现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成.设工程期限为x 天,则下面所列方程中正确的是( ).(A )1614=-++x x x ;(B )614-=-x x x ;(C )1614=++-x x x ;(D )x x x x =++-614. 二、填空题1.已知关于x 的方程1(3)10(0)m x m x x ++--=≠,当m_________时,它是一元二次方程。
代数方程-列方程解应用题知识结构增长(降低)率工作效率利润行程几何图形其他知识精讲类型一、增长(降低)率增长率问题公式:2(1)a x b ±=其中a 为初始值即变化前的值,b 为变化后值,x 为增长率或者降低率.例题1、一种药品经过两次降价后,每盒的价格从原来的60元降到现在的48.6元,设平均每次的降低率是x 元,则可以列方程:_____________,降低率是________.例题2、某公司去年各项经营收入中,经营电脑配件收入为500万元,占全部经营总收入的13,该公司预计明年经营总收入达到2160万元,求从去年到明年每年经营总收入的平均年增长率.例题3、一辆汽车,新车的购买价是20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后的价值是11.56万元,求这辆车第二、三年的折旧率.例题4、某工厂甲、乙两个车间在6月份共生产231台仪器,每个车间都比上月增产,且增产的百分率相同,已知甲车间上个月月产量不少于100台,6月份比上个月增产5台,乙车间上月生产120台.问:甲车间上月生产多少台?6月份每个车间增产的百分率是多少?例题5、某农户种植花生,原来种植的亩产量为200千克,出油率为50%,现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量增长率的12,求新产品花生亩产量的增长率?例题6、某工厂今年头三个月生产甲、乙两种产品,已知甲种产品1月份生产16件,以后每月比上月增长相同的百分率;乙种产品每月比上月增产10件.又知2月份的甲、乙两种产品的产量之比为2:3,且3月份的两种产品的产量之和为65件,求甲种产品每月的增长率和乙种产品1月份的产量.类型二、工作效率工作总量=工作效率 工作时间;假设工作总量是1,则工作效率是1工作时间.例题1、(1)一项工程甲单独做需要a天完成,乙单独做需要b天完成,则甲乙合作需要_____天完成;(2)甲、乙两个工程队合作修筑一条通道,已知甲工程队比乙工程队每天多修5米,甲工程队修筑80米所用的时间与乙工程队修筑70米所用的时间相同,那么甲工程队每天修________米,如果设甲工程队每天修x米,则可列出方程__________.例题2、某服装厂准备加工300套演出服,在加工了60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用了9天完成任务,求该厂原来每天加工多少套演出服.例题3、汛期到来之前,某施工队承接了一段长300米的河提加固任务,加固80米后,接到防汛指挥部的指示,要求加快施工速度,为此施工队在保证质量的前提下,每天多加工15米,这样一共用了6天完成了任务,问接到指示后,施工队每天加固河堤多少米.例题4、有一项工程,甲单独做比甲、乙合作的天数多5天,如果甲、乙先合作4天,再由乙单独做3天,才能完成全部工作的一半,问甲、乙单独完成此项工程各需要多少天.例题5、某工厂甲、乙两个车间各生产300个零件,按原来的工效,乙车间需要比甲车间多用一天的时间完成,现在甲、乙两车间都提高了工效,其中甲车间工效提高了20%,而乙车间提高了一倍,结果生产同样的300个零件,乙车间比甲车间少用了2天就可完成,问甲、乙两车间原来生产300个零件各需要多少天?例题6、已知甲、乙、丙三人做某项工作,甲独做所需要的时间是乙、丙两人合做这件工作的a倍,乙独做需要的时间是甲、丙两人合做这件工作的b倍,求丙独做所用的时间是甲、乙两人合做此工作的几倍.例题7、一个水池有甲、乙两个进水管,单独开放甲管注满水池比单独开放乙管少用10小时,如果单独开放甲管10个小时后,加入乙管,需要6个小时把水池注满,那么单独开放一个水管,需要多少小时才可以把水池注满?类型三、利润单件利润=售价-成本;总利润=单件利润 销售件数.例题1、某各个体户以2元/kg的价格购进一种食品,以3元/kg的价格出售,每天可售出200kg,为促销,该个体户决定降价销售,经调查,这种食品每降价0.1元/kg,每天可多售出40kg,另外每天房租等固定成本24元,此人想每天盈利200元,应将售价降低为多少元/kg?例题2、甲、乙两家便利店到批发站采购一批饮料,共25箱,由于两店所处的地理位置不同,因此甲店的销售价格比乙店的销售价格每箱多10元.当两店将所进的饮料全部售完后,甲店的营业额为1000元,比乙店少350元,求甲乙两店各进货多少箱饮料?例题3、某水果店在水果批发市场用100元购进一批甲种水果,再用100元购进一批乙种水果,已知购进的乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价低0.5元/千克.(1)求甲乙两种水果各购进了多少千克?(2)购进水货当天,甲乙两种水果都按照2.8元/千克出售,乙种水果很快售完,而甲种水果先售出35,剩余的按售价打5折出售,这一天的水果买卖是否赚钱?如果赚钱了,赚多少?如果不赚钱,那么赔了多少?例题4、某中学库存960套旧课桌椅,准备修理后捐助给贫困山区学校,现在有甲乙两个木工小组都希望承揽这项业务,经协商研究得知:甲小组单独修理这批桌椅比乙小组单独修理要多用20天;乙小组每天比甲小组多修理8套;学校每天需要付甲乙小组修理费分别是80元和120元;(1)求甲乙两个小组每天各修理课桌椅多少套?(2)在修理桌椅的过程中,学校委派一名维修工进行质量监控,由学校每天发出10元钱作为生活补贴;现在有三种修理方案:方案一由甲单独修理;方案二由乙单独修理;方案三由甲乙共同修理;选择哪种方案,更省钱?类型四、行程行程问题中三个变量:路程、速度和时间,关系如下:路程=速度 时间可以通过等式的先关计算推导出速度、和时间的相关计算公式.例题1、小王从甲地到乙地需要m分钟,若小李同时从乙地到甲地,则两人经过n分钟相遇,则小李从乙地到甲地需要_________分钟(用含m、n的代数式表示).例题2、甲、乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时,二人每小时各走多少米?例题3、已知A、B两地相距125km,甲乙两人同时A、B两地出发,相向而行,每走10km 甲比乙快36分钟,经5小时两人相遇,求甲乙两人的速度.例题4、甲、乙两人分别从相距27千米的A 、B 两地同时出发,相向而行,3小时相遇,随后两人按照原来的速度继续前进,甲到达B 地比乙到达A 地少用1小时21分钟,求两人的速度.类型五、几何图形关于线段长度类问题,主要列无理方程求解;与面积相关的问题;图形中的动点问题.例题1、函数y =2x 图像上一点P 到点A (5,0)的距离是5,求点P 的坐标.例题2、已知直角三角形的两条直角边的差是2cm ,它的面积是12cm 2,求这两条直角边的长.例题3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度围成一个正方形,两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度,若不能,请说明理由.例题4、如图,笔直公路上A 、B 两点相距10千米,C 、D 为两居民区,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =6千米,CB =8千米,现要在公路AB 段上建一超市E ,使C 、D 两居民区到E 的距离相等,则超市E 应建在离A 处多远处. A B C DE例题5、有一块长x 米,宽120米(x >120)的长方形,投资方计划将它分成甲乙丙三部分,其中甲和乙为正方形,甲为住宅区,乙为商场,丙为公司,若已知丙地的面积为3200米,求x 的值.例题6、有一块长为80米,宽为50米的长方形绿地,其中有三条直路(图中的阴影部分,道路的一边AD 与长方形绿地的一边平行,且道路的出入口AB 、CD 、EF 、KI 、GH 、IJ 的长度都相等,其余部分种植绿化).已知道路的面积为352平方米,求道路出入口的边的长度例题7、等腰Rt △ABC 中,8 cm AB BC ==,动点P 从点A 出发,沿AB 向点B 移动.通过点P 引平行于BC 、AC 的直线与AC 、BC 分别交于点R 、Q ,问:AP 等于多少厘米时,平行四边形PQCR 的面积等于162cm .甲 乙丙AB CD EF G H KI J AB CP QR例题8、m、n为两条互相垂直的笔直公路,工厂A在公路n上,距公路m为1千米,B与工厂A在公路m的同侧,且距公路m为2千米,距公路n为3千米.现要在公路m上建造一个车站P,使它与A、B的距离之和为25千米,求P 的位置.mn例题9、已知A(0,-1),B(0,4),点P在坐标轴上,且PA+PB=35,求点P的坐标.例题10、如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点B出发沿BC边向点C以2cm/s的速度移动.(1)如果P、Q同时出发,当某个点先到达终点时,运动终止.问:几秒钟后,可使△PCQ的面积为8平方厘米?(2)如果P、Q同时出发,且点Q到达点C后立即返回,速度保持不变,直到点P到达点C后同时停止运动,那么在整个移动过程中,是否存在某一时刻,使得△PCQ的面积等于1平方厘米?若存在,求出运动时间;若不存在,请说明理由.类型六、其他例题1、有一个非零数,它与4的和的正平方根再加上2后恰好等于它本身,求这个数.例题2、有一个两位数,如果个位上的数与十位上的数的和是5,并且个位上的数的平方比十位上的数大1,求这个两位数.例题3、某剧场有座位800个,每排的座位数一样多,在每排增加5个座位,并增加2排后就有座位1020个,问原来座位多少排?原每排多少个座位.例题4、植树节前,园林局把植数1600棵的任务交给了一个小队,小队被分成若干个组,计划每个组植树的棵树相同,但后来又4个组另有任务不能参加,所以其他组就要比原计划多植树20棵,每个小分队共分成了多少个组.例题5、学校甲、乙、丙三个摄影兴趣小组进行了一次摄影作品交流活动,活动时,每位同学向不同组的每个组员送一张摄影作品,这样互相交流的摄影作品共310张,已知甲组人数是丙组人数的2倍,乙组比甲组少3人,这三个摄影小组各有多少人?例题6、小强放学回家后,向爸爸、妈妈询问火箭队与雄鹿队的当天的篮球比赛的结果,妈妈说:“本场比赛火箭队的姚明比雄鹿的易建联多得了12分”.爸爸说:“如果把姚明的分数乘以易建联的得分再加上36分,恰好等于他们两人的得分之和的15倍,并且,如果姚明的得分不超过30分,则雄鹿队胜,否则,火箭队胜”,请你帮小强算一下,这场比赛,究竟是哪个队胜了?姚明和易建联各得了多少分?练习题1、某公司1996年出口创收135万元,1997年、1998年每年都比上一年增加a%,那么1998年这个公司出口创收_________元.2、甲、乙两个工程队合修一条路要6天完成,如果各队单独修路,则甲队比乙队少用5天,设甲、乙两队单独修路所需天数分别为x天和y天,则可列方程组为()A.65x yx y+=⎧⎨=-⎩B.65x yx y+=⎧⎨=+⎩C.11165x yx y⎧+=⎪⎨⎪=-⎩D.11165x yx y⎧+=⎪⎨⎪=+⎩3、已知点A(12,2),B(3,-1),在x轴上找一点P,使PA=2PB.4、甲、乙两组工人合做某项工作,10天以后,因甲组另有任务,乙组再单独做2天才完成,如果单独完成这项工作,甲组比乙组可以快4天,求各组单独完成这项工作所需要的天数.5、有一面积为150平方米的长方形饲养场,饲养场一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米,求饲养场的长和宽.6、修建360米长的一段高速公路,甲工程队单独修建比乙工程队多用10天,甲工程队每天比乙工程队少修建6米.甲工程队每天修建的费用为2万元,乙工程队每天修建的费用为3.2万元.(1)求甲、乙两个工程队每天各修建多少米;(2)为在35天内完成修建任务应请哪个工程队修建这段高速公路才能在按时完成任务的前提下所花费用较少?并说明理由7、要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛.8、初二(1)班班委会主动为班级上一位生病住院的同学筹集部分医药费,计划筹集600元,由全体班委同学分担,后来又6位同学知道消息后也自愿参加了捐助和班委同学一起分担,因此每个班委的同学比原来少分担了50元,问:该班委有几个人?按照原计划每个班委平均分摊多少元.9、制造一种产品,原来每件的成本是500元,销售价是625元,经市场预测,该产品销售价第一个月将降低20%,第二个月将比第一个月提高6%,为了使两个月后的原销售利润不变,该产品的成本价平均每月应降低多少?10、一汽艇用一定速度驶完一段路程,若汽艇每小时少走8千米,则走完全程要多用4小时,若汽艇每小时多走8千米,则走完全程可少用2小时,试求这段路的长度以及汽艇原来的速度.11、有两块正方形的木板,其中大块的面积比小块的面积大45平方分米,已知小木块的边长比大木块的边长短3分米,求这两块木板的面积分别是多少.12、坐标轴上有B、C两动点.B从P(4,0)点以1v=的速度沿x轴负方向运动,同时CB点从y轴某处以2v=的速度直线运动.问两点能否在OP的中点A处相遇,若能,求CC点的起始坐标;若不能,说明原因.巩固1、已知有两个数,甲数与乙数的和为9,甲数的倒数减去乙数的倒数等于120,求这两个数.2、甲乙两个工程队合作一项工程,6天可以完后,如果单独工作,甲队比乙队少用5天完成,两队单独完成各需要多少天完成?3、已知P在第二四象限的角平分线上,且它到点A(4,0),B(1,3)的距离相等,求点P的坐标.4、学校电脑小组活动中,学生小丽为使输入200个汉字所用的时间减少10秒必须把每秒钟输入汉字的字数增加10%,问小丽原来输入200个汉字的时间是多少秒?5、某车间承包了装配及其240台的任务,要求按时按量完成,由于进行了技术革新,每天可多装配1台,结果该车间不但比规定提前了11天完成任务,还多装配了5台,合同规定的时间是多少天.6、小明同学到文具店买了两种品牌的笔共16支,其中买甲品牌的笔用了12元,买乙品牌的用了9元,甲品牌的笔每支比乙品牌的笔便宜0.3元,问甲乙两种品牌的单价是多少?7、某种汽水有大、小瓶装两种规格,现用48元购大瓶装汽水,80元购小瓶装汽水,总共26瓶,如用80元购大瓶装汽水,48元购小瓶装汽水,总共22瓶,求大小瓶装汽水各多少元?8、某经济开发区今年1月份工业产值达50亿元,第一季度的总产值为165.5亿元,问:2月份、3月份每月的增长率是多少?9、甲、乙两人加工一批零件,甲独做比两人合做多用18天,乙独做比两人合做多用32天.求甲、乙独做各需要多少天?10、如图,现有一长方形的地,长是15米,宽是10米,要在它的中央划一块长方形的花坛,花坛四周铺上草地,草地的宽都相等,花坛占原长方形面积的13,求草地的宽是多少米.11、了缓解甲、乙两地的旱情,某水库计划向甲乙两地送水,甲地需要水量180万立方米,乙地需要水量120万立方米.现已经两次送水,第一次往甲地送水3天,第二次往乙地送水2天,共送水84万立方米,第2次往甲地送水2天,往乙地送水3天,共送水81万立方米,如果每天的送水量相同,那么完成往甲地、乙地送水任务还需要多少天?测试卷一、填空题1、一次同学聚会时,大家一见面就互相握手,一共握了45次,则参加聚会的同学共 _________人.2、某款轿车原价a 万元,现在平均每次降价%x ,经过连续两次降价后的车价是_______.3、学校组织为贫困地区儿童捐资助学活动.其中八年级(1)班和八年级(2)班捐款总额分别为1 000元和900元.已知八年级(1)班比八年级(2)班少5名学生,而八年级(1) 班的人均捐款额比八年级(2)班的人均捐款额多5元.设八年级(1)班有学生x 名,则可列方程 __________.4、某城市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.为使工程能提前3个月完成,需要将原定的工作效率提高12%,则原计划完成这项工程用_____个月.5、一个数和它的正的平方根的和是6,则这个数是________.6、点P 在x 轴上,且点P 到点()3,4Q -的距离是它到点()6,2R 距离的2倍,则点P 的坐标为________.7、点P 在第一、三象限两坐标夹角的角平分线上,且与点()4,4A 的距离等于2,则点P 的坐标为________.8、甲、乙两人分别从A ,B 两地同时出发,匀速相向而行,在距离B 地6千米处相遇,相遇后两人又继续前进,当他们分别到达B 地、A 地后立刻返回,又在距A 地4千米处 相遇,若甲回到原处比乙早20分,则甲的速度为______,乙的速度为______.二、选择题9、某学校用420元钱到商场购买某消毒液,经过还价,每瓶便宜0.50元,结果比用原价多买了20瓶,设原价每瓶x 元,则可列出方程为( ).A .420420200.5x x -=- B .420420200.5x x-=- C .4204200.520x x -=- D .4204200.520x x -=- 10、有一位同学生病住院,需缴纳医药费1 440元,班委发动了一部分同学捐款(每人捐款数相同),捐款活动后,又有8位同学也要加入捐款,这样使原来参加的每位同学的捐款比预计少20元之外,还可以买一包16元的奶粉,则原来参加捐款的人数为( ).A .20B .28C .50D . 7211、甲、乙两人骑自行车从相距60千米的A , B 两地相向而行,甲从A 地出发至2千米时,想起有东西忘在A 地,即返回去取,又立即从A 地向B 地行进,甲、乙两人恰好在 AB 中点相遇,已知甲的速度比乙的速度快2.5千米/时,求甲、乙两人的速度.设乙的速度是x千米/时,所列方程正确的是().A.32302.5x x=+B.32302.5x x=-C.34302.5x x=-D.34302.5x x=+三、列方程(组)解应用题12、某商场在“五一”节期间实行让利销售,全部商品一律按9折销售,这样每天所获得的利润恰是销售收入的20%,第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元,求(1)第三天的销售收入是多少万元;(2)第二天和第三天销售收入平均每天的增长率.13、甲、乙两城间的铁路路程为2 400千米.经过技术改造,列车实施提速,提速后比提速前速度增加40千米/时,列车从甲城到乙城的行驶时间减少2时.这条铁路在现有条件下安全行驶速度不得超过250千米/时.请你用学过的数学知识说明在这条铁路的现有条件下列车还可以再次提速吗?14、某工程若由甲、乙两队合作6天完成,厂家需付甲、乙两队共8 700元;若由乙、丙两队合作10天完成,厂家需付乙、丙两队共9 500元;若由甲、丙两队合作,5天完成全部工程的23,厂家需付甲、丙两队共5 500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若工期要求不超过15天完成全部工程,问可由哪队单独完成此项工程花钱最少? 请说明理由.15、某工程队承担了铺设一段长3千米的地铁轨道的光荣任务,铺设600米后,该工程队改进技术,每天比原来多铺设10米,结果共用了 80天完成任务,试问:该工程队改进技术后每天铺设轨道多少米?16、有一种书包的批发价格是每个40元,当每个标价50元进行销售时,估计能卖出500个,但是售价每提高1元,销售量就会减少10个,另外,商店经营应按销售利润的10%缴纳销售税.商店希望通过销售这种书包能净赚纳税后利润7 200元,又能让顾客得益,求每个书包应该定价为多少元?17、两名滑冰运动员甲和乙分别在平坦的冰面上的点A和点B, AB之间的距离是100 米,甲离开点A以8米/秒的速度沿着与AB成60°角的直线滑行,在甲离开点A的同时,乙以7米/秒的速度也沿着一条直线滑行离开点B,这条直线能使两名滑冰者在给定的速度下最早相遇,求最早相遇的时间.18、有一特殊材料制成的质量为30克的泥块,现把它切开为大小两块,将较大泥块放在一架不等臂天平的左盘,称得质量为27克,又将较小泥块放在该天平的右盘中,称得质量为8克,若只考虑天平的臂长不等,其他因素忽略,试求出两个泥块的质量.2122。
代数式方面的应用题代数式是一种数学表达式,通常由字母、数字、运算符等组成。
在代数式中,字母通常代表未知数,而数字和运算符则用于描述这些未知数之间的关系。
代数式在数学中有着广泛的应用,可以用于解决各种问题,包括应用题。
应用题是一种实际问题,通常涉及到数量关系和实际问题。
应用题中的问题需要用数学模型进行描述和解决。
代数式在解决应用题中有着重要的作用,可以通过代数式的变形和运算来找到问题的解决方案。
下面我将通过一些例子来说明代数式在解决应用题中的应用。
1、线性方程的应用线性方程是代数式中的一种基本形式,通常用于解决实际问题。
例如,有一个线性方程:3x + 2 = 5。
这个方程描述了一个简单的问题:3个未知数加上2等于5。
通过解这个方程,我们可以找到未知数x的值。
在实际问题中,线性方程可以用于解决各种问题,例如:* 购物问题:一个人购买了3个苹果和2个橙子,总共花费了5元。
我们需要找出每个水果的单价。
* 距离问题:一个人走了3小时,每小时走了2公里,总共走了多少公里?* 时间问题:一个人每天工作3小时,每小时可以完成2项任务,他一共可以完成多少项任务?通过建立代数式,我们可以方便地描述这些问题,并找到解决方案。
2、二次方程的应用二次方程是一种更复杂的代数式形式,通常用于解决涉及到平方的问题。
例如,有一个二次方程:x^2 - 6x + 9 = 0。
这个方程描述了一个问题:一个数的平方减去6乘以这个数再加上9等于0。
通过解这个方程,我们可以找到满足这个条件的数的值。
在实际问题中,二次方程可以用于解决各种问题,例如:* 面积问题:一个人需要用篱笆围成一个面积为6平方米的矩形花园。
我们需要找出花园的长和宽。
* 利润问题:一个人销售了100个产品,每个产品的成本是1元,售价是2元。
我们需要计算他的总利润。
* 速度问题:一辆汽车以每小时100公里的速度行驶了10分钟,我们需要计算它行驶的距离。
通过建立代数式,我们可以方便地描述这些问题,并找到解决方案。
代数方程化归思想:高次化低次:降次的方法:因式分解,换元分式化整式:化整式的方法:去分母,换元无理化有理:化有理方程的方法:平方法,换元多元化一元:代入和加减消元一、一元一次方程和一元二次方程的解法1、一元二次方程的解法主要有四种:(1)直接开平方法:适用于(mx+n)2=h (h≥0)的一元二次方程。
(2)配方法:适用于所有化为一般形式后的一元二次方程。
但是,具有二次项系数为1,一次项系数为偶数特点的一元二次方程,用配方法解才较简便。
配方法是通过配方将一元二次方程化成(mx+n)2=h (h≥0)的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。
其基本步骤是:①首先在方程两边同除以二次项系数,把二次项系数化为1;②把常数项移到等式的右边;③方程两边同时加上一次项系数一半的平方;④方程左边写成完全平方式,右边化简为常数;⑤利用直接开平方法解此方程用配方法解一元二次方程要注意,当二次项系数不为1时,一定要化为1,然后才能方程两边同时加上一次项系数一半的平方(3)公式法:适用于解一般形式的一元二次方程。
利用公式()042422≥--±-=ac b a ac b b x 可以解所有的一元二次方程。
注意:当b 2-4ac ≥0时,方程才有实数解;当b 2-4ac <0时,原方程无实数解。
(4)因式分解法:适用于方程右边是0,左边是易于分解成两个一次因式乘积的一元二次方程。
2、含字母系数的整式方程的解法3、特殊的高次方程的解法(1)二项方程)0,0(0≠≠=+b a b ax n 的解法二项方程的定义:如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另外一边是零,则这样的方程叫做二项方程。
关于x 的一元n 次二项方程的一般形式是二项方程的解法及根的情况:一般地,二项方程)0,0(0≠≠=+b a b ax n 可变形为ab x n -= 可见,解一元n 次二项方程,可以转化为求一个已知数的n 次方根,运用开方运算可以求出这个方程的根。