大连理工大学2007年考研试题及解答正
- 格式:doc
- 大小:181.00 KB
- 文档页数:9
2007年全国硕士入学统考数学(一)试题及答案一、选择题(本题共10小题,每小题4分,满分40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)当x →+0时,与x 等价的无穷小量是( ). (D) 3.[2,3]上的图形分别是直径为1的上、下半圆周,)24)(x f 处连续,下列命题错误的是(0)0(=f存在,则0)0(=f (C) 若xx f x )(lim 0→存在,则0)0('=f 存在(D) 若xx f x f x )()(lim 0--→存在,则0)0('=f 存.(5)设函数)(x f 在(0,+∞)上具有二阶的导数,且0)0(>''f 令)2,1)((Λ==n n f u n ,则下列结论正确的是( )(A) 若,21u u >则{}n u 必收敛。
(B) 若,21u u >则{}n u 必发散。
(C) 若,21u u <则{}n u 必收敛。
(D) 若,21u u <则{}n u 必发散。
(6)设曲线L :),((1),(y x f y x f =具有一阶的连续偏导数),过第Ⅱ象限内的点M 和Ⅳ象限内的点N ,Γ为L 上从点M 到点N 的一段弧,则下列积分小于零的是( )(A).),(⎰Γdx y x f (B).),(⎰Γdy y x f(C) .),(⎰Γds y x f . (D).),(),(⎰Γ'+'dy y x f dx y x f y x(7)设向量组321,,a a a 线性无关,则下列向量组线性相关的是( )(A),,,133221a a a a a a --- (B) ,,,133221a a a a a a +++ (C) ,2,2,2133221a a a a a a ---. (D) ,2,2,2133221a a a a a a +++.(8)设矩阵,,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=000010001211121112B A 则A与B( )(A) 合同,且相似 (B) 合同但不相似(C) 不和同,但相似. (D) 既不合同,也不相似(9)某人向同一目标独立的重复射击,每次射击命中目标的概率为p ()10(<<p ,则此人第4次射击恰好第2次命中的概率为( )(A)2)1(3p p - (B) 2)1(6p p - (C) 22)1(3p p -. (D) 22)1(6p p -(10)设随机变量(X,Y)服从二维正态分布,且X与Y不相关,)(),(y f x f y X 分别表示X,Y的概率密度,则在Y=y 的条件下,X的条件概率密度)|(|Y X f Y X 为( ) (A) )(x f X (B) )(y f y (C) )()(y f x f y X . (D).)()(y f x f Y X二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (11)1231x e dx x=⎰1 (12) 设(,)f u v 为二元可微函数,(,)yxz f x y =,则zx∂=∂ (13) 二阶常系数非齐次线性方程2432x y y y e '''-+=的通解为y =(20) (本题满分10分)设幂级数nn n a x∞=∑在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0)1y xy y y y ''''--===(Ⅰ)证明22,1,2,;1n n a a n n +==+L (Ⅱ)求()y x 的表达式 (21) (本题满分11分) 设线性方程组123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩与方程12321x x x a ++=-有公共的解,求a 的值及所有的公共解.(22) (本题满分11分).设三阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Ta λλλ===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ) 验证1a 是矩阵B 的特征向量,并求B 的全部特征值的特征向量; (Ⅱ) 求矩阵B.(23) (本题满分11分)设二维随机变量(X,Y)的概率密度为2,01,01,(,)0x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ) 求{}P X>2Y ;(Ⅱ) 求z X Y =+的概率密度()z f z (24)(本题满分11分)设总体X 的概率密度为1,0,21(;)1,2(1),0x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数(01)θθ<<未知.12,,,n X X X L 是来自总体X 的简单随机样本,X 是样本均值.(Ⅰ) 求参数θ的矩估计量ˆθ4X是否为2θ的无偏估计量,并说明理由。
2007年考研数学(三)真题一.选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1)当0x +→等价的无穷小量是()A.1-.ln(1B+1C-.1D -(2)设函数()f x 在0x =处连续,下列命题错误的是:()A .若0()limx f x x→存在,则(0)0f =.B 若0()()limx f x f x x→+-存在,则(0)0f =.C .若0()limx f x x →存在,则'(0)f 存在.D 若0()()limx f x f x x→--存在,则'(0)f 存在(3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:().A .(3)F 3(2)4F =--.B (3)F 5(2)4F =.C (3)F -3(2)4F =-.D (3)F -5(2)4F =--(4)设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于().A 10arcsin (,)xdy f x y dx ππ+⎰⎰.B 10arcsin (,)ydy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dxππ+⎰⎰.D 1arcsin 02(,)ydy f x y dxππ-⎰⎰(5)设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是().A 10.B 20.C 30.D 40(6)曲线1ln(1),x y e x=++渐近线的条数为().A 0.B 1.C 2.D 3(7)设向量组线性无关,则下列向量组线相关的是()(A )12αα-2131,,αααα--(B)21αα-2331,,αααα++(C )1223312,2,2αααααα---(D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B ()(A )合同,且相似(B)合同,但不相似(C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为()2()3(1)A p p -2()6(1)B p p -22()3(1)C p p -22()6(1)D p p -(10)设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X,Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为()(A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim (sin cos )________2x x x x x x x →∞+++=+.(12)设函数123y x =+,则()(0)_________n y =.(13)设(,)f u v 是二元可微函数,(,y x z f x y=则z zy x y∂∂-=∂∂________.(14)微分方程31()2dy y y dx x x=-满足11x y ==的特解为__________.(15)设距阵01000010,00010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭则3A 的秩为_______.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为________.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.(18)(本题满分11分)设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=;(Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ=(20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.1231232123123(21)(11)020(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Tλλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量;(Ⅱ)求矩阵B.(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z .(24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值.(Ⅰ)求参数θ的矩估计量 θ;(Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.2007年考研数学(三)真题一、选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1)当0x +→等价的无穷小量是(B )A.1-.ln(1B+1C-.1D -(2)设函数()f x 在0x =处连续,下列命题错误的是:(D)A .若0()limx f x x→存在,则(0)0f =.B 若0()()limx f x f x x→+-存在,则(0)0f =.C .若0()limx f x x →存在,则'(0)f 存在.D 若0()()limx f x f x x→--存在,则'(0)f 存在(3)如图.连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ).A .(3)F 3(2)4F =--.B (3)F 5(2)4F =.C (3)F -3(2)4F =-.D (3)F -5(2)4F =--(4)设函数(,)f x y 连续,则二次积分1sin 2(,)xdx f x y dy ππ⎰⎰等于(B ).A 1arcsin (,)xdy f x y dx ππ+⎰⎰.B 1arcsin (,)y dy f x y dx ππ-⎰⎰.C 1arcsin 02(,)ydy f x y dxππ+⎰⎰.D 1arcsin 02(,)ydy f x y dxππ-⎰⎰(5)设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(D ).A 10.B 20.C 30.D 40(6)曲线1ln(1),x y e x=++渐近线的条数为(D ).A 0.B 1.C 2.D 3(7)设向量组线性无关,则下列向量组线相关的是(A)(A )12αα-2131,,αααα--(B)21αα-2331,,αααα++(C)1223312,2,2αααααα---(D)1223312,2,2αααααα+++(8)设矩阵211121112A --⎧⎫⎪⎪=--⎨⎬⎪⎪--⎩⎭,100010000B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭则A 与B (B )(A )合同,且相似(B)合同,但不相似(C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为,则此人第4次射击恰好第2次命中目标的概率为(C)2()3(1)A p p -2()6(1)B p p -22()3(1)C p p -22()6(1)D p p -(10)设随机变量(,)X Y 服从二维正态分布,且X 与Y 不相关,(),()x y f x f y 分别表示X,Y 的概率密度,则在Y y =条件下,X 的条件概率密度()X Y x y f 为(A)(A )()X f x (B)()y f y (C)()()x y f x f y (D)()()x y f x f y 二、填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上(11)3231lim (sin cos )___0_________2x x x x x x x →∞+++=+.(12)设函数123y x =+,则()1(1)2!(0)___________3n n n n n y +-=.(13)设(,)f u v 是二元可微函数,(,y xz f x y =则''122(,)2(,)z z y y x x y x y f f x y x x y y x y∂∂-=-+∂∂.(14)微分方程31()2dy y y dx x x =-满足11x y ==的特解为221ln x y x=+.(15)设距阵01000010,00010000A ⎛⎫⎪ ⎪= ⎪⎪⎝⎭则3A 的秩为__1___.(16)在区间(0,1)中随机地取两个数,这两数之差的绝对值小于12的概率为_34_.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y y x =由方程ln 0y y x y -+=确定,试判断曲线()y y x =在点(1,1)附近的凹凸性.【详解】:''''1'2'''''''21''11ln 2102ln 112ln121()(2ln )0(2ln )()11(2ln1)8()(1,1)x x x y y y y yy y y y y y y y y y y yy y x ===+-=⇒=+==+++=⇒=-+=-=-<+=对方程两边求导得从而有再对两边求导得求在(1,1)的值:所以在点处是凸的(18)(本题满分11分)设二元函数2. 1.(,)1 2.x x y f x y x y ⎧+≤⎪=≤+≤计算二重积分(,).Df x y d σ⎰⎰其中{}(,)2D x y x y =+≤【详解】:积分区域D 如图,不难发现D 分别关于x 轴和y 轴对称,设1D 是D 在第一象限中的部分,即{}1(,)0,0D D x y x y =≥≥ 利用被积函数(,)f x y 无论关于x 轴还是关于y 轴对称,从而按二重积分的简化计算法则可得1(,)4(,)DD f x y d f x y d σσ=⎰⎰⎰⎰设11112D D D =+,其中{}{}1112(,)1,0,0,(,)12,0,0D x y x y x y D x y x y x y =+≤≥≥=≤+≤≥≥于是1111211122(,)4(,)4(,)4(,) 44(,)DD D D D D f x y d f x y d f x y d f x y d x d f x y d σσσσσσ==+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由于{}11(,)01,01D x y x y x =≤≤≤≤-,故11111222000111(1)3412xD x d x dx dy x x dx σ-==-=-=⎰⎰⎰⎰⎰为计算12D 上的二重积分,可引入极坐标(,)r θ满足cos ,sin x r y r θθ==.在极坐标系(,)r θ中1x y +=的方程是1,2cos sin r x y θθ=+=+的方程是,2cos sin r θθ=+,因而12120,2cos sin cos sin D r πθθθθθ⎧⎫=≤≤≤≤⎨⎬++⎩⎭,故1222cos sin 2100cos sin 1cos sin D r d dr r ππθθθθθθθθ++==+⎰⎰⎰⎰⎰令tan2t θ=作换元,则2arctan t θ=,于是:0:012t πθ→⇔→且2222212,cos ,sin 111dt t td t t t θθθ-===+++,代入即得121122200001122100122(1)cos sin 122(1)22 22 =1)D dt dt d t u t t t du du duu u πθθθ===-=++--=-==--=⎰⎰⎰⎰⎰⎰⎰综合以上计算结果可知11(,)41)1)123Df x y d σ=⨯+=+⎰⎰(19)(本题满分11分)设函数()f x ,()g x 在[],a b 上内二阶可导且存在相等的最大值,又()f a =()g a ,()f b =()g b ,证明:(Ⅰ)存在(,),a b η∈使得()()f g ηη=;(Ⅱ)存在(,),a b ξ∈使得''()''().f g ξξ=【详解】:证明:(1)设(),()f x g x 在(,)a b 内某点(,)c a b ∈同时取得最大值,则()()f c g c =,此时的c 就是所求点()()f g ηηη=使得.若两个函数取得最大值的点不同则有设()max (),()max ()f c f x g d g x ==故有()()0,()()0f c g c g d f d ->-<,由介值定理,在(,)c d 内肯定存在()()f g ηηη=使得(2)由(1)和罗尔定理在区间(,),(,)a b ηη内分别存在一点''1212,,()()f f ξξξξ使得==0在区间12(,)ξξ内再用罗尔定理,即''''(,)()()a b f g ξξξ∈=存在,使得.(20)(本题满分10分)将函数21()34f x x x =--展开成1x -的幂级数,并指出其收敛区间.【详解】:102001111()()(4)(1)513121111513512111111()()()154151531()311243111111()()()(1)151101021()211122111()()153nn nnn n n f x x x x x x x x f x x x x x x f x x x x x x f x ∞=∞=∞===--+---+=----+-==-=-----<⇒-<<-===--++-<⇒-<<-=-+∑∑∑记其中其中则01((1)10212nnn x x ∞=---<<∑故收敛域为:1231232123123(21)(11)20(1)4021(2)x x x x x ax x x a x x x x a a ⎧++=⎪++=⎨⎪++=⎩++=-本题满分分设线性方程组与方程有公共解,求的值及所有公共解【详解】:因为方程组(1)、(2)有公共解,即由方程组(1)、(2)组成的方程组1231232123123020(3)4021x x x x x ax x x a x x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=-⎩的解.即距阵211100201401211a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭211100110001000340a a a ⎛⎫ ⎪- ⎪→ ⎪- ⎪ ⎪++⎝⎭方程组(3)有解的充要条件为1,2a a ==.当1a =时,方程组(3)等价于方程组(1)即此时的公共解为方程组(1)的解.解方程组(1)的基础解系为(1,0,1)T ξ=-此时的公共解为:,1,2,x k k ξ==当2a =时,方程组(3)的系数距阵为111011101220011014400001111100⎛⎫⎛⎫⎪ ⎪⎪ ⎪→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭此时方程组(3)的解为1230,1,1x x x ===-,即公共解为:(0,1,1)Tk -(22)(本题满分11分)设3阶实对称矩阵A 的特征值12311,2,2,(1,1,1)Tλλλα===-=-是A 的属于1λ的一个特征向量.记534B A A E =-+,其中E 为3阶单位矩阵.(Ⅰ)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量;(Ⅱ)求矩阵B.【详解】:(Ⅰ)可以很容易验证111(1,2,3...)nnA n αλα==,于是5353111111(4)(41)2B A A E ααλλαα=-+=-+=-于是1α是矩阵B 的特征向量.B 的特征值可以由A 的特征值以及B 与A 的关系得到,即53()()4()1B A A λλλ=-+,所以B 的全部特征值为-2,1,1.前面已经求得1α为B 的属于-2的特征值,而A 为实对称矩阵,于是根据B 与A 的关系可以知道B 也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B的属于1的特征向量为123(,,)Tx x x ,所以有方程如下:1230x x x -+=于是求得B 的属于1的特征向量为23(1,0,1),(1,1,0)TTββ=-=因而,矩阵B 属于2μ=-的特征向量是是1(1,1,1)Tk -,其中1k 是不为零的任意常数.矩阵B 属于1μ=的特征向量是是23(1,1,0)(1,0,1)TTk k +-,其中23,k k 是不为零的任意常数.(Ⅱ)由1122332,,,B B B ααβαββ=-==有令矩阵123123(,,)(2,,)B αααβββ=-,则1(2,1,1)P BP diag -=-,所以那么11123123211111033(2,,)(,,)210101303201110330B βββααα------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,0 1.(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(Ⅰ)求{}2P X Y >;(Ⅱ)求Z X Y =+的概率密度()Z f z .【详解】:(Ⅰ){}2(2)DP X Y x y dxdy >=--⎰⎰,其中D 为01,01x y <<<<中2x y >的那部分区域;求此二重积分可得{}112002(2)xP X Y dx x y dy>=--⎰⎰1205()8x x dx=-⎰724=(Ⅱ){}{}()Z F z P Z z P X Y z =≤=+≤当0z ≤时,()0Z F z =;当2z ≥时,()1Z F z =;当01z <<时,32001()(2)3zz x Z F z dx x y dy z z -=--=-+⎰⎰当12z <<时,1132115()1(2)2433Z z z x F z dx x y dy z z z --=---=-+-⎰⎰于是222,01()44,120,Z z z z f z z z z ⎧-<<⎪=-+≤<⎨⎪⎩其他(24)(本题满分11分)设总体X 的概率密度为1,0,21(;),1,2(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数(01)θθ<<未知,12,,...n X X X 是来自总体X 的简单随机样本,X 是样本均值.(Ⅰ)求参数θ的矩估计量 θ;(Ⅱ)判断24X 是否为2θ的无偏估计量,并说明理由.【详解】:(Ⅰ)记EX μ=,则1022(1)xxEX dx dxθθμθθ==+-⎰⎰1142θ=+,解出122θμ=-,因此参数θ的矩估计量为 122X θ=-;(Ⅱ)只须验证2(4)E X 是否为2θ即可,而2221(4)4()4(())4(())E X E X D X E X DX EX n ==+=+,而1142EX θ=+,221(12)6EX θθ=++,22251()481212DX EX EX θθ=-=-+,于是22533131(4)1233n n n E X n n n θθ+-+=++≠因此24X 不是为2θ的无偏估计量.。
硕士研究生入学考试数学二试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当0x +→时,与x 等价的无穷小量是 (A) 1xe-. (B) 1ln1xx+-. (C) 11x +-. (D) 1cos x -. [ B ]【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案. 【详解】 当0x +→时,有1(1)~xx ee x -=---;111~2x x +-; 2111cos ~().22x x x -= 利用排除法知应选(B). (2) 函数11()tan ()()xxe e xf x x e e +=-在[,]ππ-上的第一类间断点是x =(A) 0. (B) 1. (C) 2π-. (D)2π. [ A ] 【分析】 本题f (x )为初等函数,找出其无定义点即为间断点,再根据左右极限判断其类型。
【详解】 f (x )在[,]ππ-上的无定义点,即间断点为x =0,1,.2π±又 11110()tan tan lim lim 1(1)1()xxx x xx e e x x e exx e e e e --→→++=⋅=⋅-=---, 11110()tan tan lim lim 111()xxx x xx e e x x e exx e e e e++→→++=⋅=⋅=--, 可见x =0为第一类间断点,因此应选(A).(3) 如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t dt =⎰则下列结论正确的是(A) 3(3)(2)4F F =--. (B) 5(3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(45)3(--=-F F . [ C ]【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
2007 年研究生入学考试数学三试题一、选择题: 1~ 10 小题,每小题 4 分,共 40 分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.( 1)当 x0 时,与 x 等价的无穷小量是( A )1 e x( )1 x ( ) 1x 1 ( D)1 cos x[]B lnxC1( 2)设函数 f ( x) 在 x0 处连续,下列命题错误的是:(A )若 limf ( x) 存在,则 f (0)0 ( B )若 lim f (x)f ( x)存在,则 f (0) 0 .x 0xx 0x(B )若 limf ( x)存在,则 f (0)0 ( D )若 lim f (x)f (x)存在,则 f (0) 0 .xxx 0x[ ]( 3 )如图,连续函数y f (x) 在区间 3, 2 , 2,3 上的图形分别是直径为1 的上、下半圆周,在区间2, 0 , 0, 2 的图形分别是直径为2 的下、上半圆周,设 F ( x)xf (t )dt ,则下列结论正确的是:(A ) F(3)3F( 2)(B)F (3)5F(2)44(C ) F (3)3F(2)(D ) F(3)5F( 2)[]414( 4)设函数 f ( x, y) 连续,则二次积分f ( x, y)dy 等于dxsin x21dyf (x, y)dx1 f ( x, y)dx( A )( B )dy0 arcsin y 0 arcsin y 1arcsin y1arcsin y( C )dyf (x, y)dx(D )dyf ( x, y)dx22( 5)设某商品的需求函数为 Q 1602P ,其中 Q, P 分别表示需要量和价格,如果该商品需求弹性的绝对值等于 1,则商品的价格是(A) 10.(B) 20 (C) 30.(D)40.[]( 6)曲线 y1 ln 1 e x 的渐近线的条数为x(A )0.(B )1. (C )2. (D )3. []( 7)设向量组 1 , 2 , 3 线性无关,则下列向量组线性相关的是线性相关,则(A) 12 ,23 ,31(B) 12 ,23 ,3 1(C)122 ,223 ,32 1 .(D)12 2 ,223 ,32 1 .[]2 1 1 1 0 0( 8)设矩阵 A1 21 , B 0 1 0 ,则 A 与B1120 0(A) 合同且相似( B )合同,但不相似 .(C) 不合同,但相似. (D) 既不合同也不相似 []( 9)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0p 1) ,则此人第 4 次射击恰好第 2 次击中目标的概率为(A ) 3 p(1p) 2 .( B ) 6 p(1 p) 2 .(C ) 3 p 2 (1 p)2 .(D ) 6 p 2 (1 p) 2[ ]( 10)设随机变量 X ,Y 服从二维正态分布,且X 与 Y 不相关, f X ( x), f Y ( y) 分别表示 X ,Y 的概率密度,则在 Yy 的条件下, X 的条件概率密度f X|Y ( x | y) 为(A) f X ( x) .(B)f Y ( y) . (C) f X ( x) f Y ( y) . (D)f X (x)[].f Y ( y)二、填空题 : 11~ 16 小题,每小题 4 分,共 24 分 . 把答案填在题中横线上 .( 11)x 3 x 2 1cos x)__________.limx3(sin xx2x( 12)设函数 y1,则 y ( n ) (0)________.2x3( 13) 设 f (u, v) 是二元可微函数, zfy , x,则 x zyz__________.x y xy3( 14)微分方程dyy 1 y 满足 y x 1 1的特解为y________.dxx 2 x0100( 15)设矩阵A0010,则 A3的秩为.00010000( 16)在区间0,1 中随机地取两个数,则这两个数之差的绝对值小于1的概率为. 2三、解答题:17~ 24 小题,共86 分 . 解答应写出文字说明、证明过程或演算步骤.( 17)(本题满分 10分 )设函数 y y(x) 由方程 y ln y x y0 确定,试判断曲线y y( x) 在点 (1,1)附近的凹凸性.( 18)(本题满分 11分)x2 ,| x | | y |1设二元函数 f (x, y)1, 1| x || y |2,计算二重积分 f ( x, y)d ,其中Dx2y 2D x, y | x | | y | 2.( 19)(本题满分 11分)设函数 f ( x), g ( x) 在a, b上连续,在 (a, b) 内具有二阶导数且存在相等的最大值,f (a)g(a), f (b)g(b) ,证明:存在(a, b) ,使得 f( )g ( ) .( 20)(本题满分 10分 )将函数 f ( x)1展开成 x1的幂级数,并指出其收敛区间. x23x4( 21)(本题满分 11分)x1x2x30设线性方程组x12x2ax30与方程 x12x2x3a1有公共解,求 a 的值及所有公共解.x14x2a2x3 0( 22)(本题满分 11分)设三阶对称矩阵 A 的特征向量值11, 22, 3 2 ,1(1, 1,1)T是 A 的属于 1 的一个特征向量,记 B A54A3E,其中E为3阶单位矩阵 .(I )验证1是矩阵B的特征向量,并求B的全部特征值与特征向量;(II )求矩阵B .(23)(本题满分 11 分)设二维随机变量( X , Y) 的概率密度为2 x y, 0x 1,0 y 1f ( x, y).0,其他(I)求P X 2Y;(II)求Z X Y 的概率密度. 2007 答案1⋯ .【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可.【详解】当 x0 时,1 e x x ,1x 11x , 1cos x1x21x ,222故用排除法可得正确选项为( B ) .ln1xln(1 x)ln(1x )111事实上, lim1x lim lim1x11x 2 x1,x0x x 0x x 02x1xx)ln(1x)x o(x)x o(x )x o(x)x .或 ln ln(11x所以应选( B)【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算..2⋯⋯ .【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数 f ( x) 去进行判断,然后选择正确选项.【详解】取 f (x)| x |,则 lim f ( x) f ( x)0 ,但 f ( x) 在 x0 不可导,故选(D).x 0x事实上,在 (A),(B) 两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得 f (0) 0 .在( C)中,lim f (x)存在,则 f (0) 0, f(0)lim f ( x)f(0)lim f ( x)0 ,所以(C)项正确,x 0x x0x0x 0x故选 (D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效 .3⋯⋯ .【分析】本题实质上是求分段函数的定积分.【详解】利用定积分的几何意义,可得F(3) 1211213,F(2)1221,222822121F( 2) f (x)dx f ( x)d x f (x)dx1.20202022所以 F (3)3F(2)3F( 2) ,故选( C ).44【评注 】本题属基本题型 . 本题利用定积分的几何意义比较简便.4⋯⋯ .【分析 】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分.【详解 】由题设可知,x,sin x y 1,则 0 y 1,arcsin y x,2故应选( B ).【评注 】本题为基础题型. 画图更易看出 .5⋯⋯ .【分析 】本题考查需求弹性的概念 .【详解 】选( D ) .dQ P 2P P 40,商品需求弹性的绝对值等于Q1dP 160 2P故选( D ) .【评注 】需掌握微积分在经济中的应用中的边际,弹性等概念 .6⋯⋯ .【分析 】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断 .【详解 】 lim ylim 1 ln 1 e x, lim ylim 1 ln 1 e x0 ,xxxxxx所以y 0是曲线的水平渐近线;lim ylim1 ln 1 e x,所以 x0 是曲线的垂直渐近线;x 0x 0xlim ylim 1 ln 1 e xln 1 e xe x x 1xlimlim 1e ,xx xxx xx11 x,所以 y x是曲线的斜渐近线 .b l i m y xl i ml n 1 exxxx故选( D ) .【评注 】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意 e x 当 x, x时的极限不同 .7⋯⋯ ..【分析 】本题考查由线性无关的向量组1, 2 , 3 构造的另一向量组 1, 2 , 3 的线性相关性 . 一般令1, 2, 31, 2, 3 A ,若 A 0,则 1, 2,3线性相关;若 A0,则1, 2,3线性无关.但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由1223310 可知应选( A ).或者因为1 0 1 1 0 112 ,23 ,311,2,31 1 0 ,而 1 1 00 ,0 1 1 0 1 1所以12 ,23 ,3 1 线性相关,故选( A ) .1,0,0 TT0,0,1 T【评注 】本题也可用赋值法求解,如取1,20,1,0 , 3 ,以此求出 ( A ),( B ),( C ),( D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.8⋯⋯ 【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得 A 的特征值,并考虑到实对称矩阵 A 必可经正交变换使之相似于对角阵,便可得到答案.2 1 1【详解】由 E A1 2 1(3)2可得 123,3 0,112所以 A 的特征值为 3,3,0;而 B 的特征值为 1,1,0.所以 A 与 B 不相似,但是A 与B 的秩均为 2,且正惯性指数都为 2,所以 A 与 B 合同,故选( B ) .【评注 】若矩阵 A 与 B 相似,则 A 与 B 具有相同的行列式,相同的秩和相同的特征值.所以通过计算 A 与 B 的特征值可立即排除( A )(C ).9⋯⋯ ..【分析 】本题计算贝努里概型,即二项分布的概率 . 关键要搞清所求事件中的成功次数 .【详解 】p ={前三次仅有一次击中目标,第4 次击中目标}C 31 p(1 p) 2 p 3p 2 (1 p) 2 ,故选( C ) .【评注 】本题属基本题型 .10⋯⋯ .【分析 】本题求随机变量的条件概率密度,利用X 与 Y 的独立性和公式f X |Y ( x | y)f ( x, y) 可求解 .f Y ( y)【详解】因为 X ,Y 服从二维正态分布,且 X 与 Y 不相关,所以 X 与 Y 独立,所以 f (x, y) f X ( x) f Y ( y) .故 f X |Y ( x | y)f (x, y) f X (x) f Y ( y)f X ( x) ,应选( A ) .f Y ( y)f Y ( y)【评注 】若X ,Y 服从二维正态分布,则 X 与 Y 不相关与 X 与 Y 独立是等价的 .11⋯ .【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论 .x 3x 2x 3x 2 1【详解 】因为 lim x 3 1lim 2x2x3 2x 00,| sin x cos x | 2 ,x2 xxx 112x所以 lim x3x x23 1(sin x cos x)0 .x2x【 评注 】无穷小的相关性质:( 1) 有限个无穷小的代数和为无穷小;( 2) 有限个无穷小的乘积为无穷小;( 3) 无穷小与有界变量的乘积为无穷小.12,⋯⋯ ..【分析 】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解 】 y1 , y 2,则 y ( n) ( x) ( 1)n 2n n! ,故 y (n) (0) ( 1)n 2n n! .2x 32x 3 2(2 x 3)n 13n 1【评注 】本题为基础题型 .13⋯⋯ .【分析 】本题为二元复合函数求偏导,直接利用公式即可 .【详解 】利用求导公式可得z y 1 x x 2 f1f 2 ,yz 1 f 1 x2 f 2 ,yxy所以 xzyz2 f 1 yf 2 x.xyxy【评注 】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性 .14⋯ ..【分析 】本题为齐次方程的求解,可令uy.xy,则原方程变为【详解 】令 uxu x du1 u 3 dudx .udx2u 3 2x两边积分得11ln x1ln C ,2u 2221y 2即 x1e u 2x1e x 2 ,将 y x 11代入左式得 Ce ,CCx 2x故满足条件的方程的特解为ex e y 2 ,即 y, x e 1 .ln x1【评注 】本题为基础题型 .15⋯⋯⋯ .【分析 】先将 A 3 求出,然后利用定义判断其秩 .0 1 0 0 0 0 0 10 0 1 00 0 0 0【详解】A0 0A30 0 0 r ( A) 1.0 1 0 0 0 0 00 0 0 0【评注 】本题为基础题型 .16⋯⋯⋯ .【分析 】根据题意可得两个随机变量服从区间0,1 上的均匀分布,利用几何概型计算较为简便 .【 详解 】利用几何概型计算 . 图如下: y1AO 1/2 1/2x1 2S A 132所求概率1.S D4【评注 】本题也可先写出两个随机变量的概率密度,然后利用它们的独立性求得所求概率.17⋯⋯ ..【分析 】由凹凸性判别方法和隐函数的求导可得.【详解 】 方程 y ln y x y 0 两边对 x 求导得y ln y yy1 y 0 , y即 y (2 ln y)1,则1 y (1).2上式两边再对 x 求导得y2y (2ln y)0y1,所以曲线 y y( x) 在点 (1,1)附近是凸的.则 y (1)8【评注】本题为基础题型 .18⋯⋯ .【分析】由于积分区域关于x, y 轴均对称,所以利用二重积分的对称性结论简化所求积分.【详解】因为被积函数关于x, y 均为偶函数,且积分区域关于x, y 轴均对称,所以f (x, y)d f (x, y)d,其中 D1为 D 在第一象限内的部分.D D1而 f ( x, y)d x2d1dD1x y 1,x 0, y 0 1 x y2,x 0, y 0x2y21x12x1dy22x1dydx x2 dy dx dx000 1 xx2y210x2y212 ln 1 2 .12所以 f ( x, y)d 14 2 ln1 2 . 3D【评注】被积函数包含x 2y 2时 , 可考虑用极坐标,解答如下:f (x, y)d1d x 2y 21 x y2 1 x y 2x 0, y 0x0, y 022 d sin1cos drsin cos2 ln(12) ..19⋯⋯ . 【分析】由所证结论 f ( ) g ( ) 可联想到构造辅助函数 F ( x) f (x)g ( x) ,然后根据题设条件利用罗尔定理证明.【详解】令 F (x) f (x) g( x) ,则 F ( x) 在a,b上连续,在 (a,b) 内具有二阶导数且 F (a) F (b)0 .( 1)若f (x), g( x)在(a, b)内同一点c取得最大值,则 f (c) g(c) F (c)0 ,于是由罗尔定理可得,存在1( a,c), 2(c,b) ,使得F(1) F(2) 0.再利用罗尔定理,可得存在( 1 , 2 ) ,使得 F ( ) 0 ,即 f ( ) g ( ) .( 2)若 f (x), g( x) 在 (a, b) 内不同点 c 1, c 2 取得最大值,则 f (c 1) g(c 2 ) M ,于是F (c 1 ) f (c 1 ) g(c 1) 0, F (c 2 ) f (c 2 ) g( c 2 ) 0 ,于是由零值定理可得,存在c 3 (c 1 , c 2 ) ,使得 F (c 3 ) 0于是由罗尔定理可得,存在1( a,c 3 ), 2 (c 3 ,b) ,使得F(1) F(2) 0.再利用罗尔定理,可得,存在( 1 , 2),使得 F () 0 ,即 f( ) g ( ) .【评注 】对命题为 f ( n) () 0 的证明,一般利用以下两种方法:方法一:验证 为 f (n 1) ( x) 的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证 f ( n 1) ( x) 在包含 x于其内的区间上满足罗尔定理条件..20⋯ .【分析 】本题考查函数的幂级数展开,利用间接法.【详解 】 f (x)11 1 11 ,而3x 4 ( x 4)( x 1) 5 x 4 x 1x 21 1 11x 1n( x n1)1n, 2 x 4 ,1x 43 1 x 3 n 03 n 03311 11n( 1)n( x 1)nx 11 x 3 ,x 1n 1, x 1 2 12 n 02n 022所以 f ( x)(x 1)n( 1)n ( x 1)n1( 1)n nn 102n 1n 1n 1 ( x 1) ,n 03n n 032收敛区间为 1 x 3 .【评注 】请记住常见函数的幂级数展开 .21⋯ ..【分析 】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a .【详解 】将方程组和方程合并,后可得线性方程组x1x2x30x12x2ax302x14x2 a x30x12x2x3 a 1其系数矩阵11101110A12a001a10.1 4 a200 3 a2 1 0121 a 1010a111101110 01a1001a100 0 a23a 2 00 0 1 a.a 10 0 1 a a 10 0 (a 1)(a 2)0显然,当 a1, a 2 时无公共解.当时,可求得公共解为Ta1k 1 , 0 ,1为任意常数;, k当 a 2 时,可求得公共解为T 0,1, 1.【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.22⋯⋯【分析】本题考查实对称矩阵特征值和特征向量的概念和性质.【详解】(I)B1A54A3 E 1543543 1 1 2 1,1 1 1 1111则1是矩阵 B 的属于-2的特征向量.同理可得532 ,B 543133.B22 4 2 12333所以 B 的全部特征值为2,1, 1设B的属于 1 的特征向量为2( x1, x2 , x3 )T,显然 B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T120 .即x1x2x30 ,解方程组可得 B 的属于1的特征向量2k1 (1,0, 1)T k2 (0,1,0) T,其中 k1 , k2为不全为零的任意常数.由前可知 B 的属于-2的特征向量为k3 (1, 1,1)T,其中 k3不为零.101100(II)令P011,由(Ⅰ)可得 P-1BP010,则101002011B10 1 .110【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为 Ax x 的形式.请记住以下结论:(1)设是方阵 A 的特征值,则kA, aA bE, A2 , f ( A), A 1, A*分别有特征值k, a b, 2 , f ( ),1A, ( A 可逆),且对应的特征向量是相同的.( 2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的23⋯⋯ .【分析】(I)可化为二重积分计算;(II)利用卷积公式可得.1x7【详解】(I)P X 2Y dx 22 x y dxdy 2 x y dy.0024x 2 y(II)利用卷积公式可得f Z ( z) f ( x, z x)dxz(2x)dx,0z102z z20z11(2x)dx,1z2(2z)21z 2 .z10,其他0,其他【评注】 (II) 也可先求出分布函数,然后求导得概率密度..(24) (本题满分 11 分)设总体 X 的概率密度为10x,21,x 1f ( x)2(1)0,其他( X1, X 2 , ,, X n ) 为来自总体X 的简单随机样本,X 是样本均值.( I )求参数 的矩估计量;(II )判断 4X 2 是否为2的无偏估计量,并说明理由 .【分析 】利用 EX X 求( I );判断 E 4X 2?2.【详解】(I ) EX xf ( x)d xx dx1xdx1 ,222 14令 X11242X.2(II )E 4X24E X24 DXEX 241DXEX 2,n而 EX2x 2f ( x)dxx 21x 221 ,dxdx330 22 16EX2225所以DXEX,121248所以E 4X24 1DX EX11 2111 52 ,2n3n3n4 12n故4X 2 不是2的无偏估计量 .【评注 】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法 .。
2007年硕士研究生入学考试数学一试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 当0x +→时,与x 等价的无穷小量是(A) 1xe-. (B) 1ln1x x+-. (C)11x +-. (D) 1c o s x -. [ B ]【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】 当0x +→时,有1(1)~xxee x -=---;111~2x x +-;2111c o s~().22x x x -=利用排除法知应选(B).(2) 曲线1ln (1)xy e x=++,渐近线的条数为(A) 0. (B) 1. (C) 2. (D) 3. [ D ]【分析】 先找出无定义点,确定其是否为对应垂直渐近线;再考虑水平或斜渐近线。
【详解】 因为01lim [ln (1)]xx e x→++=∞,所以0x =为垂直渐近线;又 1lim [ln (1)]0xx e x→-∞++=,所以y=0为水平渐近线;进一步,21ln (1)ln (1)limlim []limxxx x x y e e xxxx→+∞→+∞→+∞++=+==lim11x xx ee→+∞=+,1lim [1]lim [ln (1)]xx x y x e x x→+∞→+∞-⋅=++-=lim [ln (1)]xx e x →+∞+-=lim [ln (1)]lim ln (1)0x xxx x e ex e--→+∞→+∞+-=+=,于是有斜渐近线:y = x . 故应选(D).(3) 如图,连续函数y =f (x )在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设0()().xF x f t d t =⎰则下列结论正确的是(A) 3(3)(2)4F F =--. (B) 5(3)(2)4F F =. (C) )2(43)3(F F =-. (D) )2(45)3(--=-F F . [ C ]【分析】 本题考查定积分的几何意义,应注意f (x )在不同区间段上的符号,从而搞清楚相应积分与面积的关系。
1 二.(20分)用离心泵将水库中的水送至60m 高的敞口容器,若水的流量为80m3/h,管路的内径为150mm,阀门全开时,管路总长(包括所有局部阻力当量
长度)为900m,现有一台离心泵,其特性曲线为qVH2004.0120,(Vq的单位:m3/h, H的单位:m)。已知水的密度ρ=1000kg/m3,摩擦系数为0.02。
(1) 求阀门全开时管路的特性曲线; (2) 该泵是否可用?并求阀门全开时该泵的工作点; (3) 用阀将流量调至80m3/h, 求由于流量调节损失在阀门上的压头是多少米;若泵的效率为70%,求轴功率; (4) 在泵的出口管线上并联一管路,定性分析泵的工作点如何变化,并图示之。
量增加。系统流动阻力减小,流相当于阀门开度增大,轴功率门上的压头由于调节流量损失在阀泵提供的扬程时,管路需要的扬程用阀门将流量调至(该泵可用,其工作点为)将其代入式(则若令)解:()4(4.29100036007.010004.9480;7.247.694.94;4.9480004.0120,7.698000151.060/80)3()44.76,/4.10444.764.10400151.0601/4.104,6000551.0,004.012000151.060)2()1(00151.0603600215.01690002.060150436001215.090002.060221223323222222252221021112000kWgPPmHmHmLhmmLHhmqmLhmqqqqLHqLqgqgLhgugpzLgugpzeVVVVVVVVf
三.(10分)用一回转真空过滤机过滤某水悬浮液,操作真空度为80kPa,生产能力为6m3(滤液)/h,过滤面积为5m2,转鼓沉浸角为1200,转数为0.6转/分,现拟用一板框过滤机代替上述回转真空过滤机,已知滤框长与宽均为1000mm,过滤压力为196kPa(表压),要求获得的滤液量为10 m3,过滤时间0.5小时,设滤饼不可压缩,过滤介质阻力忽略不计。试求: (1) 需要滤框和滤板各多少; (2) 板框过滤机过滤终了后在压力仍为196kPa(表压)下用相当于滤液量1/5的水洗涤,洗涤时间为多少小时﹖若卸渣﹑重装等辅助时间为0.2小时,则生产能力是多少m3(滤液)/h﹖
(回转真空过滤机生产能力KnAVh3600 ) 2
hmVVKAVddVVaVKAddVddVmmAAAKAVhmKsmKKKnKAVDWhWWWEWh/667.62.08.05.0108.05.02.082.08;841)2(1413,2,26;5.0294.0100;5.0294.010/294.036008019610333.3/10333.31206.02536003606036;360120606.05360036360120606.053600360013222222222225252''22''小时个。个,滤板需要滤框一个滤框的过滤面积为)解:( 四. (20分)拟用125℃、汽化热为2191.8 kJ/kg的饱和蒸汽将空气由20℃加热到120℃,空气的流量为9000kg/h,空气在其平均温度下的物性数据为:粘度η=2.06×10-5Pas,比热容Cpc=1.017kJ/(kg·K), 热导率λ=0.02996W/(m K)。若忽略热损失,试求: (1) 蒸汽消耗量是多少(kg/h)? (2) 已设计一台单壳程单管程换热器,其传热管规格为Ф19×2,管长为2 m,管子数目为900根,在蒸汽侧对流传热热阻及管壁与污垢热阻均可忽略的条件下,该换热器是否够用?此时空气的出口温度为多少? (3) 如果把该换热器改为双管程,则空气的出口温度为多少?若使空气的出口 温度恰好达到120℃,应在操作上采取何种措施?(通过定量计算说明) 3 (4) CttttttKmWKKmWhuuhhCtttttttKAWtKAWrDKtttttmLdAKmWKKmWcuddhddhddhhRddbddRddhKhkgDrDttcqiiiccccccmmmpiiiiiiidmidiiicccpcm2.1233.59125105083354.410179000360044.10763.9612520125ln12520125ln)125()20125(44.10763.963600)20(10179000)(63.96019.0015.04.122)/(4.1223.70741.1;741.12)3(1154364.10125201253453.210179000360044.1075.5512520125ln12520125ln)125()20125(44.1075.553600)20(1017900019588285.3244.1075.5525424936006.417108.2191360085.325105ln)120125()20125(ln44.1072900019.0)(5.55019.0015.03.70)(3.7002996.01006.210017.11006.2900015.0436009000015.0015.002996.0023.0023.0100001111)2(/6.4178.2191)20120(017.19000;)()1('2'2'2'2'2'224502450,8.08.0900450900,450,2222223212120224.0538.0524.08.00000,00012,`,
该换热器不够用。实际达到的传热速率需要的传热速率
解: 4 CTTTTTTTTT74.1215224.58120200694.410179000360044.1073.9612020ln12020ln)120()20(44.10763.963600)20120(10179000'''''''''
五.(20分)在连续精馏塔中分离苯-甲苯溶液,塔釜间接蒸汽加热,塔顶采用全凝器,泡点回流。进料为100kmol/h的含苯0.35(摩尔分率,下同)的饱和蒸汽,塔顶馏出液量为40 kmol/h,系统的相对挥发度为2.5。且知精馏段操作线方程为
16.08.0xy,试求:
(1)该操作条件下的最小回流比; (2)提馏段操作线方程; (3)若塔顶第一块板下降的液相中含苯0.70,求该板以气相组成表示的Murphree板效率。
WnWnFnLnWmnWnFnLnFnLmnWnLnVnWnVnLWnVnWmnVnLmnWnWnWnDnFeeeDDDeeeFexqqqqqxqqqqqqqyqqqqqqxqqxqqyhkmolqqqqqxyyxRxRxRRRyyxzyq1''''''
'
1
min/6040100)2(
6.2
1772.035.0
35.08.0
8.016.014541
1772.035.0)15.2(5.235.0)1(,35.0,01)解:(
08.06.105.0608.04035.010060160606016016044111mmWWWnWDnDFnFWmmWnWnLnWmnWnDnDmxyxxxqxqzqxxyxqqqxqqqy 72.016.07.08.0;8.0;)3(212*1211*1yxyyyyyyyyyEDnnnnmV 5
%6072.0854.072.08.0;85.07.05.117.05.2*1mVEy 六.(20分)在一逆流填料吸收塔中,用清水吸收混合气中的丙酮,气体处理量为1400 m3/h(标准状态)。已知混合气中含丙酮0.05(摩尔分率,下同),操作
条件下的平衡关系为xye68.1,若要求丙酮回收率为96%,出塔溶液中丙酮的浓度为0.02,试求: (1) 塔顶液相喷淋量为多少(以kg/h计); (2) 最少吸收剂用量为多少? (3) 若此时塔的气相总传质单元高度HOG=0.8m,填料层高度应为多少? (4) 若填料层高度保持不变,减少吸收剂用量,丙酮回收率如何变化(定性说明),图示操作线变化情况。
mNHhyyyNyyyyyyyyyyhkgqqqxhkghkmolqxxyyqqyyyxxqyyqOGOGmOGmenLnGnLenLnGnLnLnG61.50138.78.00138.700684367.0002.005.000684367.0002.00164.0ln002.00164.0ln002.00;0164.002.068.105.0)3(/6.1132;00298.002.005.0;0298.068.1/05.0)2(/2700/1504.2214004.2,4.2002.0002.005.0002.0)96.01(05.0)1(,05.0);()()1(21212122111minmin121211212121解:
(4)若填料层高度保持不变,减少吸收剂用量,丙酮回收率将随吸收剂用量减小而不断降低。OGmNyyxmxyy11111;
七.(10分)在一常压绝热干燥器内干燥某种物料,干燥器有效传质面积为5m2。空气进入预热器的温度为15C ,湿含量为0.0073kg水/(kg干空气)。空气进干燥器温度为90C,空气出干燥器温度为50C,干燥过程可近似为等焓过程。进入干燥器的湿物料干基含水量为0.15kg水/(kg绝干物料),产品干基含水量为0.01kg水/(kg绝干物料);干燥器的生产能力为280kg/h(以干燥产品计)。试求: (1)干空气消耗量(kg干空气/h); (2)预热器加入的热量(kW)(预热器热损失忽略); (3)若实验测得该条件下的干燥速率曲线如图所示,试求恒速干燥阶段的干燥时间。