方差分析实例
- 格式:doc
- 大小:53.00 KB
- 文档页数:4
什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。
•水平:因素变化的各种状态或因素变化所分的等级或组别。
•单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。
设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。
样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。
什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念●因素:影响研究对象的某一指标、变量。
●水平:因素变化的各种状态或因素变化所分的等级或组别。
●单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。
设各总体服从正态分布,且方差相同。
青霉素四环素链霉素红霉素氯霉素29. 627.35.821.629.224. 332.66.217.432.828. 530.811.18.325.32. 034.88.319.24.2在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题。
单因素方差分析的基本理论[1]与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平下进行了n j = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设不全相等为了便于讨论,现在引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的总体平均值与总平均的差异。
EXCEL方差分析实例在Excel中进行方差分析可以使用数据分析工具包中的Anova: Single Factor分析工具。
下面我们使用一个实例来演示如何进行方差分析。
假设有一个实验,研究不同品牌汽车轮胎的寿命是否有差异。
我们随机选择了3个品牌的轮胎,每个品牌选择了10个样本。
寿命的数据如下所示:品牌1:500,510,505,495,485,490,500,495,505,500品牌2:490,485,480,495,500,495,505,500,510,495品牌3:505,500,495,490,485,500,500,495,500,505首先,将数据输入到Excel的工作表中。
在A列中输入"品牌1", "品牌2", "品牌3",在B列中分别输入对应品牌的寿命数据,共30个数据点。
然后,在Excel的菜单栏中选择"数据",点击"数据分析"按钮。
如果"数据分析"按钮没有显示,可以在Excel选项中打开数据分析工具包。
在"数据分析"对话框中选择"Anova:Single Factor",点击"确定"。
在"Anova: Single Factor"对话框中,将输入范围设置为包含我们的数据,即B1:B30。
选择"纵向位置"为第一列。
点击"确定"。
Excel将显示方差分析的结果。
在"Anova: Single Factor"结果窗口中,我们可以看到各个组的平均值、方差、观测次数等信息。
方差分析的结果也可以在工作表中显示。
在C1单元格中输入"组间平方和",在D1单元格中输入"组内平方和",在E1单元格中输入"总平方和",在F1单元格中输入"自由度组间",在G1单元格中输入"自由度组内",在H1单元格中输入"自由度总",在I1单元格中输入"组间均方",在J1单元格中输入"组内均方",在K1单元格中输入"F值",在L1单元格中输入"P值"。
第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。
一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。
饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。
这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。
现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。
新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。
A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。
可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。
二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。
如,颜色水平:将因素中不同的现象称为水平。
(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。
多因素方差分析:同时针对多个因素进行分析。
观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。
方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。
如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。
如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。
对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。
SAS方差分析(理论+程序实例)第二十五课方差分析当影响观察结果的影响因素(原因变量或分组变量)的水平数大于2或原因变量的个数大于1个,一元时常用F 检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks ’∧检验)。
一、方差分析概述方差分析(analysis of variance )又称变异数分析,可简记为ANOV A ,主要用于检验计量资料中的两个或两个以上均值间差别显著性的方法。
当欲比较几组均值时,理论上抽得的几个样本,都假定来自正态总体,且有一个相同的方差,仅仅均值可以不相同。
还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。
所谓的方差是离均差平方和除以自由度,在方差分析中常简称为均方MS (mean square )。
1. 方差分析的基本思想根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总自由度也被分成相应的各个部分,各部分的离均差平方除以相应部分的自由度得出各部分的均方,然后列出方差分析表算出F 值,作出统计推断。
方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就越明确,对各种效应的作用就越了解,统计推断就越准确。
方差分析表的一般形式见表25.1所示:表25.1 方差分析表形式变异来源source离差平方和 SS 自由度 df 均方 MS F 统计量 F P 概率值 P 效应S 1SS 1 df 1 MS 1= SS 1/df 1 F 1(df 1, df e )= MS 1/ MS e P 1 效应S 2SS 2 df 2 MS 2= SS 2/df 2 F 2(df 2, df e )= MS 2/ MS e P 2 ………… …… …… …… 效应S mSS m df m MS m = SS m /df m F m (df m , df e )= MS m / MS e P m 误差S eSS e df e MS e = SS e /df e 总变异S T SS T = SS 1+ SS 2+…+ SS m + SS e df T =df 1+ df 2+…+ df m + df e MS T = SS T /df T F T (df T , df e )= MS T / MS e P T表中变异来源一栏,可分为总变异(total ),误差(residual ),各个效应(effect )相对应的项。
单因素方差分析完整实例假设有一家医院的研究人员想要比较三种不同药物对高血压患者的降压效果。
为了进行实验,他们随机选择了60名患有高血压的病人,并将他们随机分成三组。
第一组患者接受药物A的治疗,第二组患者接受药物B的治疗,第三组患者接受药物C的治疗。
在治疗开始前,研究人员记录了每个患者的收缩压数据。
第一步是对数据进行描述性统计分析。
研究人员计算了每一组的平均值、标准差和样本量。
结果如下:药物A组:平均收缩压150,标准差10,样本量20药物B组:平均收缩压145,标准差12,样本量20药物C组:平均收缩压155,标准差15,样本量20第二步是进行假设检验。
研究人员的零假设是所有药物的降压效果相同,即三组的平均收缩压相等。
备择假设是至少有一组的平均收缩压不同。
为了进行单因素方差分析,我们需要计算组内方差和组间方差,然后进行F检验。
组内方差反映了每一组内部数据的离散程度,组间方差反映了不同组之间平均值的差异程度。
组内方差的计算方法是对每一组的方差进行平均,然后再对所有组的方差进行加权平均。
组间方差的计算方法是对所有组的平均值进行方差分析。
我们通过公式计算出组内方差为10.08,组间方差为58.67、接下来我们计算F值,F值是组间方差除以组内方差的比值。
F=组间方差/组内方差=58.67/10.08=5.81第三步是通过查找F分布表来计算p值。
根据自由度为2(组数-1)和df = 57(总样本量-组数)的F分布表,我们可以找到在F = 5.81条件下的p值。
假设我们选择显著性水平为0.05,我们发现在F分布表上,F=5.81对应的p值小于0.05、因此,我们拒绝零假设,接受备择假设。
这意味着至少有一组的平均收缩压与其他组有显著差异。
最后一步是进行事后检验。
由于我们有三组进行比较,我们可以使用事后检验方法来确定哪两组之间存在显著差异。
常用的事后检验方法包括Tukey HSD检验、Duncan检验等。
综上所述,单因素方差分析可以帮助我们判断不同组之间是否存在显著差异。
例6.1 测定东北、内蒙古、河北、安徽、贵州5个地区黄鼬冬季针毛的长度,每个地区随机抽取4个样本,测定的结果列于表6-1。
试比较各地区黄鼬针毛长度的差异显著性。
表6-1 不同地区黄鼬冬季针毛长度(单位:mm)
地区东北内蒙古河北安徽贵州合计
1 32.0 29.
2 25.5 23.
3 22.3
2 32.8 27.4 26.1 25.1 22.5
3 31.2 26.3 25.8 25.1 22.9
4 30.4 26.7 26.7 25.
5 23.7
∑x126.4 109.6 104.1 99.0 91.4 530.5
n 4 4 4 4 4 20
x31.60 27.40 26.03 24.75 22.85 26.53 ∑X23997.44 3007.98 2709.99 2453.16 2089.64 14258.21
例6.2 园艺研究所调查了3个品种草莓的维生素C含量(mg/100g),测定结果列于表6-2。
试分析不同品种之间维生素C含量是否有显著性差异。
表6-2 不同品种草莓维生素C含量(单位:mg/100g)
例6.3 研究三种不同日粮对猪日增重的影响,每种日粮饲喂5头猪,三种日粮分别用TR1、TR2、TR3表示。
相关数据如下表所示:
TR1 TR2 TR3
270 290 290
300 250 340
280 280 330
280 290 300
270 280 300 总和 1400 1390 1560 4350
n 5 5 5 15
y280 278 312 290。
让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题就是:3份测验卷测试的效果就是否有显著性差异?
1、确定类型
由于4名学生前后做3份试卷,就是同一组被试前后参加三次考试,4位学生的考试成绩可瞧成就是从同一总体中抽出的4个区组,它们在三个测验上的得分就是相关样本。
2、用方差分析方法对三个总体平均数差异进行综合性地F检验
检验步骤如下:
第一步,提出假设:
第二步,计算F检验统计量的值:
因为就是同一组被试前后参加三次考试,4位学生的考试成绩可瞧成就是从同一总体中抽出的4个区组,它们在三个测验上的得分就是相关样本,所以可将区组间的个别差异从组内差异中分离出来,剩下的就是实验误差,这样就可以选择公式(6、6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。
①根据表6、4的数据计算各种平方与为:
总平方与:
组间平方与:
区组平方与:
误差平方与:
②计算自由度
总自由度 :
组间自由度 :
区组自由度 :
误差自由度 :
③计算方差
组间方差:
区组方差:
误差方差:
④计算F值
第三步,统计决断
根据,α=0、01,查F值表,得到,而实际计算的F检验统计量的值为
,即P(F >10、9)<0、01,
样本统计量的值落在了拒绝域内,所以拒绝零假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。
3、用q检验法对逐对总体平均数差异进行检验
检验步骤如下:
第一步,提出假设:
第二步,因为就是多个相关样本,所以选择公式(6、8)计算q检验统计量的值:
在为真的条件下,将一次样本的有关数据及代入上式中,得到A与B两组的平均数之差的q值,即:
以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示:
第三步,统计决断
为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为:
A与C之间与B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,3三个组,a=3。
根据,得到当a=2时,q检验的临界值为
;
当a=3时,q检验的临界值为;将表(6、5)中的q检验统计量的值与q临界值进行比较,得到表(6、6)中的3次测验成绩各对平均数之间的比较结果:
表6、6 3次测试各对样本平均数之差q值的比较结果
*表示在α=0、05显著性水平上有差异,**表示在α=0、01显著性水平上有差异)
从表中可以瞧出,三个测验中每两个之间的总体平均数都不相等。
因为就是同一组被试前后参加三次考试,所得到的样本就是相关样本,这些样本所属总体的方差基本相等,所以不需要对两个相关样本所属总体的方差进行齐性检验。
通过以上推断分析,我们可以知道:三份测验卷测试的效果有显著性差异,并且每两份测验卷测试的效果之间都有显著性差异。