麦克斯韦玻尔兹曼分布
- 格式:pptx
- 大小:461.65 KB
- 文档页数:25
玻尔兹曼分布
在物理学(特别是统计力学)中,麦克斯韦 - 玻尔兹曼分布是以詹姆斯·克拉克斯·马克斯韦尔和路德维希·波兹曼命名的特定概率分布。
这是第一次定义,并且用于描述颗粒速度在理想化的气体,其中所述颗粒的固定容器内自由移动,而不会彼此互动,除了非常简短的碰撞,其中它们与彼此或与它们的热环境交换能量和动量。
在该上下文中,术语“颗粒”仅指气态颗粒(原子或分子),并且假设颗粒系统已达到热力学平衡。
[1]这种粒子的能量遵循所谓的麦克斯韦 - 玻尔兹曼统计通过将粒子能量与动能等同来推导出速度的统计分布。
在一个封闭的空间中,温度为T,里面只有两种能级,粒子的总数为N,且两种能级对应的个数分别
为:,所以能级的粒子总和为。
那么N个粒子的不同状态组合数记为,且为:
通过组合数计算一下熵,熵是来源热力学的概念,熵是衡量物质的混乱程度的量,通常和物质的状态有关,我们知道当物质的能量越高时混乱程度也越高,能量越低时混乱程度也越低,下面给出熵的定义:
其中是玻尔兹曼常数,取log就是熵的来源。
把带进上式的:
现在我给空间增加少了的能量,此时封闭的空间的低
能级的粒子就会越变到高能级,也就是说会有少量的变为即:
,其中是变化的粒子数,由此我们从新计算熵为:
得到:
我们知道上式的分子和分母项是一样多的,同时在封闭的空间中是足够大的,是很小的,因此可以
把化简为:
然而从热力学角度,熵的变化量和温度以及加入的能量有关(参考维基百科),因此有如下的公式;
联立和两式的到:
化简得到为:
从上式我们看到,不同能级的比值和能量、温度T、玻尔兹曼常数都有关系,上式就称为玻尔兹曼分布。
玻尔兹曼分布定律是覆盖系统各种状态的概率分布,概率测量或频率分布。
当存在保守的外力(例如重力场,电场等)时,气体分子的空间位置不再均匀分布,并且在不同位置分子数密度也不同。
玻尔兹曼分布定律描述了在保守外力或保守外力场的作用下处于热平衡状态的理想气体分子的能量分布。
L. E. Boltzmann将麦克斯韦分布定律扩展到外力场的情况。
在相同的宽度范围内,如果E1> E2,则能量DN1大的粒子的数量少于能量DN2小的粒子的数量,并且状态是粒子优先占据较小的能量,这是玻尔兹曼的重要结果分配法。
经过近一个世纪的传播,物理和化学界逐渐接受道尔顿的“原子分子模型”,但是原子和分子的确凿证据尚未得到发现。
这时,出现了更强大的科学成就,即热力学的第一定律和第二定律。
热力学原则上解决了化学平衡的所有问题。
1892年,物理化学家奥斯特瓦尔德(Ostwald)试图证明没有必要将物理和化学问题减少到原子或分子之间的机械关系。
他试图赋予“能量”与物质对象相同的状态,甚至使物质恢复能量。
他提出“世界上所有现象都仅由时空的能量变化构成”。
在统计中,麦克斯韦·玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。
它首先被定义并在物理学中用于描述(特别是在统计力学中)粒子在理想气体中自由移动而不与固定容器中的其他粒子相互作用的速度,除了粒子与其热环境之间的非常短时间的碰撞之外通过交换能量和动力。
在这种情况下,粒子是指气态粒子(原子或分子),并且假定粒子系统达到了热力学平衡。
当这种分布最初是从1960年的麦克斯韦启蒙运动中获得的时,玻尔兹曼对这种分布的物理起源进行了许多重要的研究。
粒子速度的概率分布表明哪个速度更有可能:粒子具有从分布中随机选择的速度,并且比其他选择方法更有可能处于速度范围内。
分布取决于系统温度和颗粒质量。
Maxwell Boltzmann分布适用于经典理想气体,这是理想的真实气体。
麦克斯韦气体速率分布律推导麦克斯韦-玻尔兹曼速率分布律描述了理想气体中分子速度的统计分布。
以下是该分布律的推导过程。
首先,考虑一个由大量相同分子组成的理想气体,这些分子在容器中随机、无序地运动。
由于分子间的碰撞非常频繁,我们可以假定每个分子的运动是相互独立的。
我们的目标是求出分子速率的分布函数。
1. 假设分子的运动是三维的随机运动,并且分子间无相互作用力。
2. 假设分子的运动是各向同性的,即在任何方向上运动的概率都是相等的。
3. 假设分子的运动是稳定的,即分子的速率分布不随时间改变。
4. 引入分子速度的微分元素d³v,表示速度在v到v+dv之间的分子数。
5. 引入微元体积元素dV和微元时间元素dt。
接下来,我们将使用微元分析法来推导速率分布律。
对于一个具有速率v的分子,在时间dt内,它将沿着速度方向移动的距离为v·dt。
因此,它所扫过的体积元素为dV = v²·cos²(θ)·sin(θ)·dv·dt,其中θ是速度方向与某一选定方向(通常是x轴)的夹角。
现在,考虑在dt时间内所有具有速率v的分子所扫过的体积总和,即所有可能的方向θ的贡献。
由于θ的取值范围是0到π,我们可以将上述体积元素乘以角度元素dθ(从0到π)并积分,以得到总的体积元素dV_total:dV_total = ∫(v²·cos²(θ)·sin(θ)·dv)·dθ·dt由于cos²(θ)·sin(θ)是关于θ的偶函数,而在0到π的范围内积分,它的积分结果为零。
为了解决这个问题,我们需要考虑在速度方向上的微小位移。
在速度方向上的微小位移为v·cos(θ)·dt,因此,在dt时间内,具有速率v的分子在速度方向上的微小体积元素为dV_v = v·cos(θ)·dv·dt。
玻尔兹曼分布
什么是玻尔兹曼分布?
麦克斯韦-玻尔兹曼分布通常指气体中分子的速率的分布,但它还可以指分子的速度、动量,以及动量的大小的分布,每一个都有不同的概率分布函数,而它们都是联系在一起的。
玻尔兹曼分布形成了分子运动论的基础,它解释了许多基本的气体性质,包括压强和扩散。
玻尔兹曼分布的应用:
麦克斯韦-玻尔兹曼分布可以用统计力学来推导(参见麦克斯韦-玻尔兹曼统计)。
它对应于由大量不相互作用的粒子所组成、以碰撞为主的系统中最有可能的速率分布,其中量子效应可以忽略。
由于气体中分子的相互作用一般都是相当小的,因此麦克斯韦-玻尔兹曼分布提供了气体状态的非常好的近似。
在许多情况下(例如非弹性碰撞),这些条件不适用。
例如,在电离层和空间等离子体的物理学中,特别对电子而言,重组和碰撞激发(也就是辐射过程)是重要的。
如果在这个情况下应用麦克斯韦-玻尔兹曼分布,就会得到错误的结果。
另外一个不适用麦克斯韦-玻尔兹曼分布的情况,就是当气体的量子热波长与粒子之间的距离相比不够小时,由于有显著的量子效应也不能使用麦克斯韦-玻尔兹曼分布。
另外,由于它是基于非相对论的假设,因此麦克斯韦-玻尔兹曼分布不能做出分子的速度大于光速的概率为零的预言。
麦克斯韦波尔茨曼分布定律麦克斯韦波尔茨曼分布定律是统计物理学中的一个基本定律,用于描述粒子在热平衡态下能量分布的概率。
该定律是从统计力学的角度推导出来的,可以用来解释气体分子速度分布、能量分布等现象。
麦克斯韦波尔茨曼分布定律是描述粒子速度分布的定律之一。
它指出,在热平衡状态下,理想气体中的粒子速度分布服从麦克斯韦波尔茨曼分布。
这个分布的特点是,速度较小的粒子数目多,速度较大的粒子数目少,呈现出“钟形曲线”的形状。
麦克斯韦波尔茨曼分布定律的推导过程相对复杂,涉及到统计力学的相关知识。
但是我们可以从直观的角度来理解这个分布定律。
首先,我们知道在一个封闭的系统中,粒子的速度是随机的,存在着各种不同的速度。
其次,由于热运动的存在,粒子的速度会在一定范围内变化,即存在一定的速度分布。
最后,根据统计力学的理论,证明了这个分布的概率密度函数是一个关于速度的二次函数,也就是麦克斯韦波尔茨曼分布定律。
麦克斯韦波尔茨曼分布定律可以用来解释一些重要的物理现象。
首先是气体分子的速度分布。
根据这个定律,我们可以知道在热平衡状态下,气体分子的速度分布是呈现出一定规律性的。
速度较小的分子数目多,速度较大的分子数目少,符合高斯分布的特点。
这也就解释了为什么我们观察到的气体分子速度分布呈现出“钟形曲线”的形状。
其次是能量分布。
根据麦克斯韦波尔茨曼分布定律,粒子的能量分布也是符合一定规律的。
能量较低的粒子数目多,能量较高的粒子数目少。
这个定律的应用非常广泛,可以用来解释气体的热力学性质,如内能、压强等。
麦克斯韦波尔茨曼分布定律的应用不仅限于理想气体,还可以推广到其他粒子系统。
例如,可以用来描述固体晶格中的声子的能量分布,以及等离子体中电子的能量分布等。
在这些系统中,粒子的速度分布和能量分布也会服从麦克斯韦波尔茨曼分布。
总结起来,麦克斯韦波尔茨曼分布定律是统计物理学中的一个重要定律,用于描述粒子在热平衡状态下的速度分布和能量分布。
它的应用范围广泛,可以解释气体分子速度分布、能量分布等现象。
玻尔兹曼分布Maxwell-Boltzmann分布是一种概率分布,在物理和化学中都有应用。
最常见的应用是统计力学领域。
任何(宏观)物理系统的温度都是组成系统的分子和原子运动的结果。
这些粒子具有不同的速度范围,并且任何单个粒子的速度由于与其他粒子的碰撞而不断变化。
但是,对于大量粒子,如果系统处于或接近于平衡状态,则在一定速度范围内的粒子比例几乎不变。
Maxwell-Boltzmann分布针对任何速度范围指定了该比率,该比率是系统温度的函数。
它以James Clark Maxwell和Ludwig Boltzmann的名字命名。
Maxwell-Boltzmann分布构成了分子动力学理论的基础。
它解释了许多基本气体性质,包括压力和扩散。
Maxwell-Boltzmann分布通常是指气体中分子速度的分布,但也可以指分子的速度,动量和动量的分布。
每个都有不同的概率分布函数,并且它们都是相关的。
一起。
Maxwell-Boltzmann分布可以使用统计力学方法得出(请参阅Maxwell-Boltzmann统计数据)。
它对应于由大量非相互作用粒子组成的基于碰撞的系统中最可能的速度分布,其中量子效应可以忽略。
由于气体中分子的相互作用通常很小,因此麦克斯韦-玻耳兹曼分布提供了非常好的气体状态近似值。
在许多情况下(例如非弹性碰撞),这些条件不适用。
例如,在电离层和空间等离子体的物理学中,特别是对于电子,复合和碰撞激发(即辐射过程)很重要。
如果在这种情况下应用Maxwell-Boltzmann分布,将会得到错误的结果。
Maxwell-Boltzmann分布不适用的另一种情况是,当气体的量子热波长与粒子之间的距离相比不够小时,由于明显的量子效应,无法使用Maxwell-Boltzmann 分布。
另外,由于它是基于非相对论的假设,因此麦克斯韦-玻耳兹曼分布无法预测分子速度大于光速的概率为零。