三相异步电动机单向反接制动控制电路的安装与调试
- 格式:pps
- 大小:242.50 KB
- 文档页数:7
《电气控制系统安装与调试》课程标准《电气控制系统安装与调试》是高职机电一体化技术专业为满足企业电气装调与维修岗位的任职要求而设置的一门实践性较强的核心课程。
本课程采取“任务驱动、行动导向、理实一体”的教学模式,主要培养学生按照维修电工操作规范,正确进行普通机床电气控制系统安装、调试、故障诊断和维修的专业能力,同时注重培养学生的社会能力和方法能力。
前导课程主要是《电工电子技术应用》、《电工电子技术实训》,为本课程提供电路基本分析方法、三相交流电机的工作原理与特性、常用电工电子元器件的识别与检测、常见电工电子仪器的使用、简单电路的安装与调试等必要的理论知识及基本操作技能;后续课程是《可编程控制器应用》、《液压/气压传动技术与应用》、《自动化生产线安装与调试》、《机电设备装配与维修》,本课程为之培养机电设备的电气装调与维修技能及维修电工职业素质。
二、课程设计思路课程设计理念:依据维修电工岗位能力需求,重构、序化课程内容,以工作过程为导向进行课程设计;以学生为主体,将知识与技能有机溶入到学习项目中,以寻求“解决办法”来引发和维持学生学习兴趣和动机,在执行工作任务的过程中,探索吸收知识、掌握技能,培养学生自主学习能力和强化团队精神;通过校企共同开发课程,理论、技能和岗位体验同步训练,培养学生综合职业素质。
课程设计思路:以生产中常用的车、铳、磨、钻、镇等机床电气控制系统的安装与检修为主线,构建电气系统安装与调试、故障检修两大子学习领域,设置10个学习项目,每个项目分若干个学习任务,从对机床结构认识入手,由浅入深,循序渐进,整个工作过程将基本知识点予以贯穿,采用“做中学、做中教”的教学模式,真正以学生为主体,由学生自主查找资料,将分析问题、解决问题及团队协作始终融入教学全过程,在完成任务的过程中,学会电气系统安装、调试及检修技术,逐步形成方法能力和社会能力,充分利用学院生产性教学工厂(湘圆娄职农机制造中心)的资源优势,参与真实产品生产工作,校企携手共同开发完成课程学习任务,经过训练,为后续课程奠定了基础。
摘要三相异步电动机是一种适用范围广,使用方便的通用电机,其主要动力的来源,应用于生产,生活各个领域。
三相异步电动机的启停会对电网造成较强干扰,尤其在工业领域中的重载启动,有时也可能对设备构成严重威。
所谓电器制动,就是电动机需要制动时,通过电路的转换或改变供电条件使其产生与实际运转方向相反的电磁转矩——制动力矩,迫使电动机迅速停止转动的制动方式,所以随着技术的高速发展,电动机的启停与制动受到越来越多的运用。
关键词:三相异步电动机电气制动重载启动。
目录摘要 (I)1前言 (1)2反接制动控制设计内容 (2)2.1 正反转反接制动控制 (2)单向反接制动控制 (4)采用角-星制动反接制动控制 (6)3电路中的元器件 (8)热继电器 (8)低压断路器 (8)交流接触器 (9)刀开关 (9)组合开关 (10)速度继电器 (10)熔断器 (10)4反接制动控制电路仿真 (11)异步电机反接制动控制仿真 (11)角-星制动反接制动控制仿真 (12)心得体会 (13)参考文献 (14)1前言在现代科技发展快速的时代电动机的运用越来越广泛越来越科学。
反接制动是电动机电气制动方法之一,此种方法有制动力大,制动迅速的优点,多用在停止动作要求准确的机械设备控制电路。
反接制动的实质是改变异步电动机定子绕组中的三相电源相序,产生与转子转动方向相反的转矩,迫使电动机迅速停转。
其控制线路有单向反接制动控制线路和可逆运行反接制动控制线路。
交流电机制动采用改变相序的方法产生反向转矩,原理类似。
反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。
三相异步电动机双向启动反接制动利用了三相异步电动机的正反转的主回路并且把控制回路增加了继电器进行制动。
反接制动的正反转是利用三相异步电动机的正反转是将电动机三相电源进线中的任意两相对调,就可以达到反转控制的目的。
2反接制动控制设计内容2.1 正反转反接制动控制电路原理见图,图中KMF 为正向接触器,KMR 为反向接触器。
锦州市机电工程学校《电机与电气控制技术应用》课程标准《电机与电气控制技术应用》课程标准一、课程简介课程名称:《电机与电气控制技术应用》;学时:96授课对象:机电技术应用专业一年级学生;课程性质:《电机与电气控制技术应用》是中等职业学校机电技术应用专业的一门核心专业课程,特点是理论与实践联系非常紧密,它是中职学生在实践中检验并加深理解所学理论知识,进而牢固掌握专业知识、提高实践动手能力的重要手段和途径.它不仅为《可编程序控制器技术及应用》等后续课程、集中实训和顶岗实习打下基础,而且为相关专业学生考取初、中级维修电工职业资格证书做准备。
本课程的教学目的是让学生熟悉三相异步电动机及其电气控制系统的基本控制电路,具有电气控制系统的安装、调试和故障排除的基本能力. 本课程的突出特征是理论教学与实际训练并重,要求理论必须与操作密切结合,强调技术应用。
内容大致分为三相异步电动机正转、正反转、降压启动和制动等部分.教学应在电气控制实训室中进行,通过对典型工作任务完整工作过程的完成,培养学生的理论能力、实践能力、方法能力与社会能力,并养成良好自觉的职业习惯与素养.前期课程:计算机应用基础、机械基础、电工技术;同步课程:电子技术、机械制图;后续课程:可编程序控制器技术及应用。
二、课程设计思路(一)课程基本理念:1.突出学生为主体,注重学生的能力培养本课程在教学过程中,注重学生从事本专业工作所需的基本理论、基本方法和基本技能的学习,教学中注意激发学生的学习兴趣,在启发、提示下引导学生自主学习,提高学生的思维能力和实践技能,增强他们理论联系实际的能力,培养学生的自学能力,使他们在走上工作岗位后实现可持续发展。
培养学生作为准职业人的良好职业习惯与素养。
2.改变传统教学方式,培养学生实践动手能力本课程在教学过程中要打破传统的知识体系架构,重新建立以工作任务为引领的、任务驱动为导向的能力体系架构。
通过对典型工作任务完整工作过程的完成,培养学生自主资讯、归纳总结、实践操作的能力,使学生学会如何在一个团队的工作中通过沟通与交流,形成工作方案并具体实施,以团队合作的方式完成项目工作的能力与经验。
三相异步电动机反接制动控制电路原理示例文章篇一:哇塞!同学们,你们知道三相异步电动机反接制动控制电路原理吗?这可太神奇啦!先来说说啥是三相异步电动机吧。
它就像一个超级大力士,能给好多机器提供强大的动力。
可有时候这个大力士也得乖乖听话,该停就得停。
这时候反接制动控制电路就派上用场啦!想象一下,电动机正欢快地转着,突然我们要让它快速停下来。
这就好比你正在飞快地骑自行车,突然要急刹车!那怎么才能让电动机快速停下来呢?这就要靠反接制动控制电路啦!在这个电路里,有好多神奇的小零件在工作呢!比如说接触器,它就像一个聪明的小开关,知道什么时候该打开,什么时候该关闭。
还有继电器,就像一个忠诚的小卫士,时刻守护着电路的安全。
老师给我们讲的时候,我一开始真是一头雾水。
我就问老师:“老师,这咋这么难理解呀?”老师笑着说:“别着急,慢慢琢磨。
”然后他就给我们一步一步地解释。
他说:“当我们要让电动机反接制动时,电路会瞬间改变电流的方向。
”这就好比你跑步的时候,本来是向前跑,突然有人从后面用力拉你,让你不得不快速停下来。
同学们也都听得特别认真,有的皱着眉头思考,有的眼睛瞪得大大的,充满了好奇。
同桌还小声跟我说:“这也太有意思了!”经过老师的耐心讲解,我好像有点明白了。
原来这个反接制动控制电路就是通过巧妙地控制电流的方向和大小,来实现让电动机快速停止的目的。
我觉得这个原理就像一场精彩的魔术表演,看似复杂,其实充满了奇妙和惊喜。
只要我们认真去学,就能揭开它神秘的面纱。
所以呀,我觉得三相异步电动机反接制动控制电路原理虽然有点难,但是只要我们用心去探索,就一定能搞明白!示例文章篇二:哎呀呀,亲爱的小伙伴们,你们知道三相异步电动机反接制动控制电路原理是啥不?先让我跟你们讲讲三相异步电动机吧。
这玩意儿就像一个大力士,能帮我们干好多好多的力气活呢!那啥是反接制动呢?这就好比一辆飞速奔跑的小汽车,突然来个急刹车,而且是反向的刹车,是不是很神奇?想象一下,电动机正转得欢呢,突然给它来个大反转,是不是会产生一股很大的力量来让它快速停下来?这就是反接制动的基本思路啦!我们来说说这个控制电路是咋工作的。
项目四三相交流异步电动机及其控制线路[项目概述]现代各种生产机械都广泛使用电动机来驱动。
根据产生或使用电能种类的不同,旋转的电磁机械可分为直流电机和交流电机两大类。
交流电机可分为异步电机和同步两种。
异步电机主要作为电动机使用。
异步电动机又有单相和三相两种,而三相异步电动机又分笼型和绕线式。
三相异步电动机是所有电动机中应用最广泛的一种。
据有关资料统计,现在电网中的电能2/3以上是由三相异步电动机消耗的,而且工业越发达,现代化程度越高,其比例也越大。
三相异步电动机具有结构简单、工作可靠、价格低廉、维修方便、效率较高、体积小、重量轻等一系列优点,应用非常广泛。
例如:普通机床、起重机、生产线、鼓风机、水泵以及各种农副产品的加工机械等。
以农村中常见抽水机(水泵)为例,它的主传动设备就是一台三相异步电动机,为了完成水泵的运行,增加了外围的电气控制线路,这就是一个典型的三相异步电动机的电气控制电路。
下图是农村中常用的抽水机电气原理图,它由主电路和控制电路两部分组成。
图 4-1抽水机的电气原理图通过以上对电路的分析可知水泵的工作情况:先是KM1通电,电动机串入电阻R起动,这时R上有一定电压降,使加到定子绕组端的电压降低,从而限制起动电流使之在允许范围之内。
经过一定时间后,KM2通电,再将电动机直接与电源接通,使电动机在额定电压下正常运转。
电动机进入正常运转后, KM1和KT都不起作用了,故让它们断电释放,以节约用电。
这是一种简单的降压起动方法,缺点是起动时电阻R上要消耗一定电能,所以常用于不经常起动停止的场合。
通过此例可以看出,很多机械设备的动力传动都来自三相异步电动机,再配合相应的电气控制线路,就可以制造出各种功能的机械设备。
这里就必须学习三相异步电动机的相关知识以及三相异步电动机的启动、运行控制、制动、调速的知识。
4.1 三相异步电动机的工作原理三相异步电动机的定子绕组是一个空间位置对称的三相绕组,如果在定子绕组通入三相对称的交流电流,就会在电动机内部建立起一个恒速旋转的磁场,称为旋转磁场,它是异步电动机工作的基本条件。
电工中高级实训报告任务一、电动机控制线路的设计、安装与调试项目一、三相异步电动机点动及单相运行控制线路的安装与调试1.三相异步电动机的点动及单向运行控制线路的设计2.(1)三相异步电动机的点动控制线路3.电动机的点动控制电路,可以控制机械设备的步进和步退,电动机只作短时动作,不连续供电旋转。
机械设备手动控制间断工作,即按下启动按钮,电动机转动,松开按钮,电动机停转,这样的控制称为点动。
4.点动控制线路如图1-1 -1所示。
线路动作过程:先合上电源开关QS,按下按钮SB-KM线圈得电- +KM主触点闭合-→电动机M启动运转。
松开按钮SB-→KM线圈失电-→KM主触点断开-电动机M停止运转。
(2)三相异步电动机的点动及单向运行控制线路原理图(3)机械设备单向运转即电动机单向连续工作,而在一般控制设备中,单向运行为基本要求时,为了调试维修等需要,要求设备同时具有点动和单向运行控制功能,完成这种功能的控制电路即为混合控制电路。
其电气控制线路如图所示:线路的动作过程:先合上电源开关QS,点动控制、单向运行控制和停止的工作过程如下。
(1)点动控制。
按下按钮SB3- →SB3常闭触点先分断(切断KM辅助触点电路)。
SB3常开触点后闭合(KM辅助触点闭合) -→KM线圈得电→KM主触点闭合-→电动机M启动运转。
(2)松开按钮SB3- +SB3 常开触点先恢复分断→KM线圈失电→KM主触点断开( KM辅助触点断开)后SB3常闭触点恢复闭合→电动机M停止运转,实现了点动控制。
(3)(2)单向运行控制。
按下按钮SB2-→KM 线圈得电→KM主触点闭合(KM辅助触点闭合)-→电动机M启动运转。
实现了单向运行控制。
(4)(3)停止。
按下停止按钮SB1-→KM线圈失电→KM 主触点断开电动机M停止运转。
项目二、三相异步电动机正反转启动控制线路的安装与调试1.接触器互锁的正、反转控制线路2.图1-2-1所示为电动机正反转控制电路。
单向运转反接制动控制电路的安装与调试反接制动控制电路
三相异步电动机反接制动有两种情况:一种是在负载转矩作用下使正转接线的电动机出现反转的倒拉反接制动,它往往应用在重力负载的场合,如桥式起重机的电气控制,这一制动不能实现电动机转速为零;另一种是电源反接制动,即改变电动机电源相序,使电动机定子绕组产生的旋转磁场与转子旋转方向相反,产生制动,使电动机转速迅速下降。
当电动机转速接近零时应迅速切断三相电源,否则电动机将反向启动。
另外,反接制动时,转子与定子旋转磁场的相对速度接近于2倍的同步转速,以致反接制动电流相当于电动机全压启动时启动电流的2倍。
为防止绕组过热和减小制动冲击,一般应在电动机定子电路中串入反接制动电阻。
反接制动电阻的接法有对称接法与不对称接法两种。
采用对称电阻接法时在限制制动转矩的同时也限制了制动电流;而采用不对称制动电阻的接法则只限制了制动转矩,未加制动电阻的那一相仍具有较大的电流。
在反接制动过程中,由电网供给的电磁功率和拖动系统的机械功率全都转变为电动机的热损耗,这也限制了异步电动机每小时反接制动的次数。
FU 1
U
V W QF QS FR
n KM 1KM 2KM 1
BV
KM 2FR
R N
M
3~BV
KM 2
FU 2SB 1SB 2KM 1KM 2
KM 1三相异步电动机单向反接制动控制线路
启动时,按下启动按钮SB
2,接触器KM
1
通电并自锁,电
动机M通电旋转。
在电动机正常运转时,速度继电器BV的常开触头闭合,为反接制动作好了准备。
停车时,按下停止按钮
SB
1,接触器KM
1
线圈断电,电动机M脱离电源。
由于此时电
动机的惯性很高,速度继电器BV的常开触头依然处于闭合状
态,因此SB
1常开触头闭合时,反接制动接触器KM
2
线圈通电
并自锁。
其主触头闭合,使电动机定子绕组通过反接制动电阻R得到与正常运转相序相反的三相交流电源,电动机进入反接
制动状态,使电动机转速迅速下降。
当电动机转速接近于零时,速度继电器常开触头复位,接触器KM
2
线圈电路被切断,反接制动结束。
M
3~U V W
QS FU 1QF
KM 2
KM 3R
FR N
SB 1KA 4FR
KM 2KA 2
KA 2KM 2
BV -2
BV KM 1FU 2KA 4
KA 1
KA 3KM 3KA 2
n KA 2
KM 1BV -1KA 1n KM 1KA 4KM 1KA 4
KM 2KA 4KA 3KA 3
KM 1KA 3
SB 2SB 3KA 3
具有反接制动电阻的正反向反接制动控制线路
图中电阻R是反接制动电阻,同时也具有限制启动电流的作用。
该线路工作原理如下:合上电源开关,按下正转启动
按钮SB
2,中间继电器KA
3
线圈通电并自锁,其常闭触头保证
互锁中间继电器KA
4线圈不被接通;KA
3
的另一个常开触头闭
合,使接触器KM
1线圈通电;KM
1
的主触头闭合,使定子绕组
经电阻R接通正序三相电源,电动机开始降压启动。
此时虽然
中间继电器KA
1线圈电路中KM
1
的常开辅助触头已闭合,但是
KA1线仍无法通电,因为速度继电器BV的正转常开触头BV
1尚未闭合。
当电动机转速上升到一定值时,BV的正转常开触头闭合,
中间继电器KA
1通电并自锁。
这时由于KA
1
、KA
3
等中间继电器
的常开触头均处于闭合状态,接触器KM
3
线圈通电,于是电阻R 被短接,定子绕组直接加以额定电压,电动机转速上升到稳定的工作转速。
在电动机正常运行的过程中,若是按下停止按钮
SB
1,则KA
3
、KM
1
、KM
3
三只线圈相继断电。
由于此时电动机
转子的惯性转速仍然很高,速度继电器的正转常开触头尚未复
原,中间继电器KA
1仍处于工作状态,因此接触器KM
1
的常闭触
头复位后,接触器KM
2
线圈通电,其常开主触头闭合,使定子绕组经电阻R获得反相序的三相交流电源,对电动机进行反接制动。
转子速度迅速下降,当其转速小于100 r/min时,BV的正转
常开触头恢复断开状态,KA
1线圈断电,接触器KM
2
被释放,反
接制动过程结束。