第一章 力学性能讲解
- 格式:ppt
- 大小:2.07 MB
- 文档页数:40
材料力学性能教案第一章:材料力学性能概述教学目标:1. 理解材料力学性能的概念及其重要性。
2. 掌握材料力学性能的主要指标。
3. 了解不同材料的力学性能特点。
教学内容:1. 材料力学性能的概念:定义、重要性。
2. 材料力学性能的主要指标:弹性模量、屈服强度、抗拉强度、韧性、硬度等。
3. 不同材料的力学性能特点:金属材料、非金属材料、复合材料等。
教学活动:1. 引入讨论:为什么了解材料的力学性能很重要?2. 讲解材料力学性能的概念及其重要性。
3. 通过示例介绍不同材料的力学性能特点。
4. 练习计算材料力学性能指标。
作业:1. 复习材料力学性能的主要指标及其计算方法。
2. 选择一种材料,描述其力学性能特点,并解释其在实际应用中的作用。
第二章:弹性模量教学目标:1. 理解弹性模量的概念及其物理意义。
2. 掌握弹性模量的计算方法。
3. 了解弹性模量在不同材料中的变化规律。
教学内容:1. 弹性模量的概念:定义、物理意义。
2. 弹性模量的计算方法:胡克定律、应力-应变关系。
3. 弹性模量在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入弹性模量的概念。
2. 讲解弹性模量的计算方法,并通过示例进行演示。
3. 通过实验或示例观察不同材料的弹性模量变化规律。
作业:1. 复习弹性模量的概念及其计算方法。
2. 完成弹性模量的计算练习题。
第三章:屈服强度与抗拉强度教学目标:1. 理解屈服强度与抗拉强度的概念及其物理意义。
2. 掌握屈服强度与抗拉强度的计算方法。
3. 了解屈服强度与抗拉强度在不同材料中的变化规律。
教学内容:1. 屈服强度与抗拉强度的概念:定义、物理意义。
2. 屈服强度与抗拉强度的计算方法:应力-应变关系、极限状态方程。
3. 屈服强度与抗拉强度在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入屈服强度与抗拉强度的概念。
第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。
2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。
3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。
4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。
5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。
6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。
7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。
8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。
9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。
10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。
11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。
用于测定没有明显屈服现象的材料的屈服强度。
12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。
13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。
14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。
15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。
16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。
17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。