第一章 量子力学基础
- 格式:ppt
- 大小:1.26 MB
- 文档页数:80
第一章量子力学基础1.1 量子力学的实验基础从十八世纪起,物理学迅速发展、完善起来,逐步成为严谨的经典物理学体系。
牛顿力学体系光电磁学经典物理力学麦克斯韦方程式热力学吉布斯-玻兹曼统计应用这些经典物理学理论,人们成功地解释了当时发现的实验现象,这种状态一直持续到十九世纪80年代。
但在十九世纪末,相继发现了一些用经典物理学无法解释的实验事实,经典物理学遭到了无法克服的困难。
经典物理学无法解释的代表性实验有黑体辐射、光电效应和氢原子的线状光谱等,这些实验现象的解释导致旧量子论的产生。
1.1.1黑体辐射与普朗克(planck)量子假设黑体辐射是最早发现与经典物理学相矛盾的实验现象之一。
黑体:一种能全部吸收照射到它上面的各种波长的光,同时也能发射各种波长光的物体。
带有一个微孔的空心金属球,非常接近于黑体,进入金属球小孔的辐射,经过多次吸收、反射,使射入的辐射全部被吸收。
小孔在吸收能量的同时也不断地辐射能量,特别是在空腔在高温时更加明显。
从小孔辐射出来的电磁波是一个连续谱,它比同样温度下任何其他物体表面的辐射都强,这种空腔辐射便是黑体辐射。
在一定温度下,小孔单位面积每秒辐射频率ν到ν+dν范围内电磁波的能量Eνdν,Eν表示黑体辐射的能量密度,以Eν对ν作图,得到能量分布曲线。
如:图1-1所示。
图1-1 黑体在不同温度下辐射的能量分布曲线随着温度的升高,总辐射能量E (即曲线包罗的面积)急剧增加,E 与热力学温度T 符合下列关系:E=δ4T (δ=5.67×82410W m K ---⋅⋅)称为斯忒蕃公式。
每条曲线都有一个峰值对应于辐射最强的频率,相应的max λ随温度升高而发生位移,满足下式:max λT=2.9×310-m.K称为维恩位移定律。
Rayleigh-Jeans (瑞利-金斯)从能量连续的经典力学出发,推出黑体辐射平衡时在频率范围ν到ν+dν内:238kT E d d cνπννν= 从上式可知,Eν正比于2ν,Eν对ν作图应为一条抛物线,它只在低频区与实验曲线近似相符,在高频区(紫外区)则因实验结果随ν增大,Eν趋于零严重不符(紫外灾难:即波长变短时能量趋于无穷大,而不象实验结果那样趋于零。
《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。
1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。
黑色物体或开一小孔的空心金属球近似于黑体。
黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。
★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。
按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。
按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。
Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。
经典理论无论如何也得不出这种有极大值的曲线。
• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。
• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。
能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。
第一章 量子力学基础知识1.1 微观粒子的运动特征基本内容一、微观子的能量量子化1. 黑体辐射黑体:是理想的吸收体和发射体.Plank 假设:黑体中原子或分子辐射能量时作简谐振动,它只能发射或吸收频率为ν,数值为ε=hν整数倍的电磁波,及频率为ν的振子发射的能量可以等于:0hν,1 hν,2 hν,3 hν,…..,n hν.由此可见,黑体辐射的频率为ν的能量,其数值是不连续的,只能为hν的倍数,称为能量量子化。
2. 光电效应和光子光电效应:是光照射在金属样品表面上,使金属发射出电子的现象。
金属中的电子从光获得足够的能量而逸出金属,称为光电子。
光电效应的实验结果:(1) 只有当照射光的频率超过某个最小频率ν时金属才能发射光电子,不同金属的ν值也不同。
(2) 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。
(3) 增加光的频率,光电子的动能也随之增加。
光子学说的内容如下:(1) 光是一束光子流,每一种频率的光的能量都有一个最小单位称为光子,光子的能量与光子的频率成正比即:νεh =0(2) 光子不但有能量,还有质量(m ),但光子的静止质量为零。
按相对论质能联系定律,20mc =ε,光子的质量为:c h c m νε==2,所以不同频率的光子有不同的质量。
(3) 光子具有一定的动量(p) p=mc=c h ν=λh(4) 光子的强度取决于单位体积内光子的数目即光子密度:ττρτd dNN =∆∆=→∆0lim将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,并把能量hν转移给电子。
电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子动能。
2021mv h E w h k +=+=νν 当νh <w 时,光子没有足够的能量,使电子逸出金属,不发生光电效应,当νh =w 时,这时的频率时产生光电效应的临阈频率0ν,当νh >w 时从金属中发射的电子具有一定的动能,它随ν的增加而增加,阈光强无关。