圆锥侧面展开图
- 格式:ppt
- 大小:571.00 KB
- 文档页数:19
圆锥的侧面展开图问题解决圆锥问题的关键是明确圆锥的侧面展开图各元素与圆锥各元素的关系——圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线,弧长是圆锥的底面圆的周长.问题往往涉及圆锥的母线长、圆锥的高以及底面半径之间的关系,勾股定理则是架起三元素间的桥梁.如图1,设圆锥的底面半径为r ,母线AB 的长为l ,高为h ,则r 2+h 2=l 2,圆锥的侧面展开图是扇形ACD ,该扇形的半径为l ,设扇形ACD 的圆心角是θ,则扇形的弧CD 的长=2πr =180l θπ,圆锥的侧面积为S 侧=12×2πr ×l =πrl .一、计算圆锥的侧面积例1 (邵阳)如图2所示的圆锥主视图是一个等边三角形,边长为2,则这外圆锥的侧面积为______(结果保留π).分析:依题意,圆锥主视图是一个等边三角形,所以圆锥的母线长为2,底面半径为1,可以直接代入公式求得.解:依题意,r=1,l =2,所以S 侧=π×1×2=2π.二、求圆锥的母线长例2 (桂林)已知圆锥的侧面积为8πcm 2, 侧面展开图的圆心角为45°,则该圆锥的母线长为( ).(A )64cm (B )8cm (C )22cm (D )2cm 分析:圆锥的侧面积即其侧面展开图扇形的面积,由扇形的面积公式可求出圆锥的母线长(侧面展开图扇形的半径即为圆锥的母线长).解:由2360n l S π=扇形,即2360n l π=8π,解得l =8(cm ).故应选(B ). 三、计算圆锥的底面半径例3 (日照)将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( ).(A )10cm (B )30cm (C )40cm (D )300cm分析:依题意,将直径为60cm 的圆形铁皮分割成三个大小相等的扇形,这三个扇形即三个相同的圆锥容器的侧面展开图.根据“侧面展开图扇形的弧长是圆锥的底面圆的周长”可求每个圆锥容器的底面半径.解:直径为60cm 的圆形铁皮的周长为60πcm ,故将该铁皮分割成三个大小相等的扇形的弧长为20πcm .图1 图2设圆锥的底面半径为r ,则2πr =20π,解得r =10.故应选(A ).四、计算圆锥的高例4 (鸡西)如图3,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 分析:借助图1分析,知在r 2+h 2=l 2中,欲求h ,需知道r ,l ,显然这里l =5 cm ,故只需再求出r .解:设圆锥的底面半径为r ,则2πr =6π,解得r =3.所以h 2=l 2- r 2=52-32,所以h =4(cm ).五、计算侧面展开图中扇形圆心角的度数 例5 (成都)若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是( ).(A )40° (B )80° (C )120° (D )150°分析:设圆锥展开图的圆心角为n °,根据弧长公式可求出侧面展开图扇形的弧长为180n l π,再根据“侧面展开图扇形的弧长是圆锥的底面圆的周长”列方程可解. 解:设圆锥展开图的圆心角为n °,则4π=6180n πg . 解得n =120.所以选(C ).六、最短路径问题例6 (青岛)如图4是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线OE (OF )长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且FA =2cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .分析:由于小蚂蚁只能在圆锥侧面上爬行,所以我们可考虑把圆锥侧面展开,将问题转化为平面图形解决.将圆锥沿母线OE 剪开,如图7所示的展开图,根据“两点之间线段最短”,知EA 即为最短路径.解:设圆锥侧面展开后扇形的圆心角为n °,因为底面的周长等于展开后扇形的弧长,所以180n OE π⋅=π E F ,即10180n π⋅=10π,解得n °=180°. 此圆锥的侧面展开图为扇形(如图5),在Rt △AEO 中, OA =OF -AF =8(cm ),O B A 图3 5cm 图5 A F E O 图4。
圆锥侧面展开图是什么图形
圆锥的侧面展开图为扇形。
扇形的半径为圆锥的母线,扇形的弧长为圆锥的底面周长。
面积公式:圆锥侧面展开图S侧=πrl=(nπl^2)/360
拓展资料:
以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
该直角边叫圆锥的轴。
(1)以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所(2)圆锥由一个顶点,一个侧面和一个底面组成,从顶点到底面圆心的距离是圆锥的高。
(3)圆锥有两个面,底面是圆形,侧面是曲面。
(4)让圆锥沿母线展开,是一个扇形。
圆柱的体积等于和它等底等高的圆锥的体积的三倍是叫圆锥形。
圆锥的展开图及侧面积能量储备● 圆锥的构成:圆锥是由一个底面和一个侧面围成的几何体(如图2441所示). ● 圆锥的母线:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.● 圆锥的高:连接圆锥顶点与底面圆心的线段叫做圆锥的高.●圆锥的基本特征:(1)圆锥的轴通过底面的圆心,并垂直于底面;(2)圆锥的母线长都相等;(3)圆锥可以看成是由一个直角三角形绕一条直角边所在的直线旋转而成的图形,故圆锥的母线l 、圆锥的高h 、圆锥底面圆的半径r 恰好构成一个直角三角形.● 如图2442所示,沿一条母线将圆锥侧面剪开并展平,容易得到圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥的母线长l ,扇形的弧长就是圆锥底面圆的周长2πr ,因此圆锥的侧面积S 侧=12·2πr ·l =πlr . 通关宝典★ 基础方法点方法点1:圆锥的侧面展开图及有关计算,要抓住三组关系:一是底面圆的周长等于侧面展开扇形的弧长;二是圆锥的母线长等于侧面展开扇形的半径;三是底面圆的半径、圆锥的高、圆锥的母线恰好构成一个直角三角形,即有母线长的平方等于底面圆的半径与圆锥的高的平方和.这三组关系是解决圆锥有关问题的依据与出发点.例:为了迎接圣诞节,小红准备做一顶圣诞帽,如图2443所示,圆锥的母线长为26 cm ,高为24cm ,求它的底面圆的半径及做这样一顶圣诞帽所需要的布料的面积(接缝忽略不计).分析:根据圆锥母线l ,高h ,底面圆的半径r 的关系,可得r =l 2-h 2,所需要的布料的面积即为圆锥的侧面积πlr .解:如图2443所示,在Rt △SOA 中,r =SA 2-SO 2=262-242=10(cm),∴ S 圆锥侧=πlr =π×26×10=260π(cm 2).答:圆锥底面圆的半径为10cm ,做这样一顶圣诞帽需要的布料的面积为260π cm 2.方法点2:“化曲为直”是把曲面(圆锥的侧面)展开成平面(扇形,即圆锥的侧面展开图),利用“两点之间线段最短”来解决距离最短问题例1:如图2447所示,有一个圆锥形的粮堆,其轴截面是边长为6m 的等边三角形,在圆锥的母线AC 的中点P 处有一只老鼠在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠.求小猫所经过的最短路径的长度.解:如图2448所示,将圆锥侧面展开,得到一个扇形,记扇形弧的中点为B′,则B′P 的长度就是要求的最短路径的长度.设圆锥侧面展开所得的扇形圆心角为n °,由题意知AB =BC =6m ,∴ 扇形的弧长为6nπ180m , 圆锥底面圆的周长为π·BC =6πm.由圆锥侧面展开所得扇形的弧长等于圆锥底面圆的周长,得6nπ180=6π. 解得n =180,∴ ∠B′AC =90°.在Rt △AB′P 中,AB′=6 m ,AP =12AC =3 m , 利用勾股定理可得B′P =AB′2+AP 2=62+32=45=35(m ).即小猫所经过的最短路径的长度为35 m .★★易混易误点易混易误点: 把圆锥的底面圆半径误认为是侧面展开图(扇形)的半径例:已知圆锥的侧面展开图的扇形圆心角为180°,底面圆的面积为15 cm 2,求圆锥的侧面积.解:设圆锥底面圆的半径为r ,侧面展开图的扇形半径为R.由题意可知⎩⎪⎨⎪⎧πr 2=15,2πr =180πR 180,∴ R =2r =2 15π. ∴ S 侧=180π360⎝⎛⎭⎫2 15π2=π2×4×15π=30(cm 2). 蓄势待发考前攻略圆锥的侧面积公式主要考查应用公式进行圆锥的高、母线长、底面半径、侧面展开图(扇形)中圆心角的计算等.多以选择题、填空题的形式出现,属基础题型,难度不大. 完胜关卡。
有关圆锥展开图计算的两个重要公式⼤家在解决有关圆锥侧⾯展开图的计算问题时,通常利⽤了两个等量关系,第⼀个是=×底⾯圆周长(或侧⾯的弧长)×母线长,第⼆个就是侧⾯的弧长等于底⾯的周长,但每次都直接利⽤这两个等量关系来计算还是很⿇烦,特别是同学们往往容易忘记乘以系数,基于此我们不妨把这两个等量关系进⼀步推导,得出实质性的乘积、⽐例公式。
我相信同学们在理解并运⽤这两个公式后,解题的思路可以变得清晰,速度和准确度也可以得到很⼤的提⾼。
⼀、推导公式:1.乘积式:侧⾯积:全⾯积:2.⽐例式:弧长等于⊙O1的周长∵∴⼜∵即:这两组公式的优点是避开了求底⾯圆周长,⽽直接建⽴了S侧与R、r的乘积关系,以及圆⼼⾓n与R、r的⽐例关系,减少了许多中间过程,特别是⽐例式给我们的计算带来了极⼤的便利。
⼆、运⽤乘积式:类型⼀:顺向使⽤公式【问题】(2009济南)在综合实践活动课上,⼩明同学⽤纸板制作了⼀个圆锥形漏⽃模型.如图所⽰,它的底⾯半径⾼则这个圆锥漏⽃的侧⾯积是()A. B. C. D.分析:从刚才推导出的可以看出,只与圆锥的母线长度以及底⾯圆半径有关,若题⽬没有直接给出母线长度以及底⾯圆半径,往往还可以利⽤R、r和h组成的直⾓三⾓形,求出未知的R 或r来,从⽽计算出侧⾯积。
结论:要求,就求R、r。
解答:此题由底⾯半径⾼可以求出母线BC为10cm,即R=10cm,r=6cm,再由,选C。
【练习】1. (2009铁岭)⼩丽想⽤⼀张半径为5cm的扇形纸⽚围成⼀个底⾯半径为4cm的圆锥,接缝忽略不计,则扇形纸⽚的⾯积是cm2.(结果⽤表⽰)202.(2009南昌)⼀个圆锥的底⾯直径是80cm,母线长是90cm,则它的侧⾯积是____ 。
3600cm23. (2008成都)⼩红同学要⽤纸板制作⼀个⾼4cm,底⾯周长是6πcm的圆锥形漏⽃模型,若不计接缝和损耗,则她所需纸板的⾯积是()BA.12πcm2 B.15πcm2 C.18πcm2 D.24πcm2类型⼆:逆向使⽤公式【问题】(2009义乌)如图,圆锥的侧⾯积为,底⾯半径为3,则圆锥的⾼AO为 .分析:从刚才推导出的可以看出,已知、R、r中任意两个量可以求出余下未知的量,若题⽬要求求出圆锥的⾼h,往往还可以利⽤R、r和h组成的直⾓三⾓形,从⽽求出。
《圆锥的侧面展开图》教案设计第一章:圆锥的侧面展开图概念介绍1.1 圆锥的侧面展开图定义引导学生回顾圆锥的基本概念,理解圆锥的侧面展开图是将圆锥的侧面展开后形成的平面图形。
通过实物演示或图片展示,让学生直观地感受圆锥的侧面展开图的形成过程。
1.2 圆锥的侧面展开图的特点分析圆锥的侧面展开图的形状,引导学生发现它是一个扇形。
解释圆锥的侧面展开图与圆锥的底面之间的关系,让学生理解展开图的弧长等于圆锥底面的周长。
第二章:圆锥的侧面展开图的计算2.1 圆锥的侧面积计算引导学生利用圆锥的侧面展开图来计算圆锥的侧面积。
给出圆锥的侧面积计算公式:侧面积= π×r ×l,其中r为圆锥的底面半径,l为圆锥的母线长。
2.2 圆锥的全面积计算引导学生理解圆锥的全面积包括底面积和侧面积。
给出圆锥的全面积计算公式:全面积= π×r ×(r + l),其中r为圆锥的底面半径,l为圆锥的母线长。
第三章:圆锥的侧面展开图的应用3.1 圆锥的侧面积在实际问题中的应用通过举例或情景设置,让学生理解圆锥的侧面积在实际问题中的应用,如制作圆锥形状的物体时计算材料用量等。
3.2 圆锥的全面积在实际问题中的应用通过举例或情景设置,让学生理解圆锥的全面积在实际问题中的应用,如计算圆锥形物体的表面积等。
第四章:圆锥的侧面展开图的绘制4.1 圆锥的侧面展开图的绘制方法引导学生学习如何将圆锥的侧面展开成一个扇形,并绘制出圆锥的侧面展开图。
通过步骤讲解和示范,让学生掌握绘制圆锥的侧面展开图的方法。
4.2 圆锥的侧面展开图的绘制技巧介绍一些绘制圆锥的侧面展开图的技巧,如如何准确地测量和标记圆锥的底面半径和母线长等。
第五章:圆锥的侧面展开图的综合练习5.1 圆锥的侧面展开图的计算练习提供一些有关圆锥的侧面展开图的计算题目,让学生巩固圆锥的侧面积和全面积的计算方法。
5.2 圆锥的侧面展开图的应用练习提供一些有关圆锥的侧面展开图的应用题目,让学生将所学知识应用到实际问题中。