圆锥的侧面展开图
- 格式:ppt
- 大小:330.50 KB
- 文档页数:27
圆锥的侧面展开图圆锥是一种几何体,它的侧面展开图可以通过以下步骤来绘制。
第一步,我们需要了解圆锥的基本结构。
圆锥有两个基本元素,即底面和侧面。
底面通常是一个圆形,而侧面是由一个点(称为顶点)和与之相连的直线段组成。
在绘制侧面展开图时,我们需要将这个直线段展开成一个矩形。
第二步,我们需要确定侧面展开图的尺寸和比例。
为了方便展示,我们可以假设圆锥的高度为h,底面半径为r。
在展开图中,我们可以选择一个合适的比例来绘制矩形,例如将矩形的高度设置为h,长度设置为2πr。
第三步,我们可以开始绘制侧面展开图。
首先,绘制一个长方形,将其高度设置为h,长度设置为2πr。
这个矩形代表圆锥的侧面展开后的形状。
第四步,我们需要在矩形的边界上标记出两个相邻的点,分别代表圆锥的底面圆的周长。
这两个点之间的距离应该等于2πr。
我们可以通过将底面圆的周长等分成若干等份来确定这两个点的位置。
第五步,将矩形的其中一条边沿着一条直线折叠,直到与另一条边重合。
这个折叠操作代表了圆锥的侧面展开的过程。
在折叠后,我们可以看到矩形的上、下两条边和底面圆的周长形成了一条螺旋线状的曲线。
这条曲线代表了圆锥的侧面展开后的形状。
第六步,将矩形的上、下两条边的切线与底面圆相交,标记出相交点。
这些点代表了圆锥侧面展开图上的特殊点,可以用来计算圆锥的体积和表面积。
第七步,连接相邻的特殊点,形成一条螺旋线状的曲线。
这条曲线代表了圆锥的侧面展开后的形状,可以帮助我们更好地理解圆锥的结构和性质。
以上就是绘制圆锥侧面展开图的基本步骤。
通过绘制侧面展开图,我们可以更好地理解圆锥的形状和结构,并且可以进行更深入的几何计算和分析。
无论是在学术研究还是实际应用中,绘制圆锥侧面展开图都有着重要的意义。
《圆锥的侧面展开图》教案设计第一章:圆锥的侧面展开图概念介绍1.1 圆锥的侧面展开图定义引导学生回顾圆锥的基本概念,理解圆锥的侧面展开图是将圆锥的侧面展开后形成的平面图形。
通过实物演示或图片展示,让学生直观地感受圆锥的侧面展开图的形成过程。
1.2 圆锥的侧面展开图的特点分析圆锥的侧面展开图的形状,引导学生发现它是一个扇形。
解释圆锥的侧面展开图与圆锥的底面之间的关系,让学生理解展开图的弧长等于圆锥底面的周长。
第二章:圆锥的侧面展开图的计算2.1 圆锥的侧面积计算引导学生利用圆锥的侧面展开图来计算圆锥的侧面积。
给出圆锥的侧面积计算公式:侧面积= π×r ×l,其中r为圆锥的底面半径,l为圆锥的母线长。
2.2 圆锥的全面积计算引导学生理解圆锥的全面积包括底面积和侧面积。
给出圆锥的全面积计算公式:全面积= π×r ×(r + l),其中r为圆锥的底面半径,l为圆锥的母线长。
第三章:圆锥的侧面展开图的应用3.1 圆锥的侧面积在实际问题中的应用通过举例或情景设置,让学生理解圆锥的侧面积在实际问题中的应用,如制作圆锥形状的物体时计算材料用量等。
3.2 圆锥的全面积在实际问题中的应用通过举例或情景设置,让学生理解圆锥的全面积在实际问题中的应用,如计算圆锥形物体的表面积等。
第四章:圆锥的侧面展开图的绘制4.1 圆锥的侧面展开图的绘制方法引导学生学习如何将圆锥的侧面展开成一个扇形,并绘制出圆锥的侧面展开图。
通过步骤讲解和示范,让学生掌握绘制圆锥的侧面展开图的方法。
4.2 圆锥的侧面展开图的绘制技巧介绍一些绘制圆锥的侧面展开图的技巧,如如何准确地测量和标记圆锥的底面半径和母线长等。
第五章:圆锥的侧面展开图的综合练习5.1 圆锥的侧面展开图的计算练习提供一些有关圆锥的侧面展开图的计算题目,让学生巩固圆锥的侧面积和全面积的计算方法。
5.2 圆锥的侧面展开图的应用练习提供一些有关圆锥的侧面展开图的应用题目,让学生将所学知识应用到实际问题中。
圆锥的侧面展开图圆锥的侧面展开图圆锥是一种立体图形,由一个圆形底面和一个顶点连接的直线组成。
在几何学中,我们经常使用侧面展开图来描述立体图形的形状和结构。
侧面展开图是将立体图形展开,使我们能够更好地理解其构造和组成。
首先,我们来看一下圆锥的基本特征。
圆锥的底面是一个圆形,用于提供稳定的支撑面。
圆锥的侧面是由从顶点连接到底面边缘的直线组成,这些直线被称为母线。
圆锥的顶点是连接底面和侧面的中心点。
为了绘制圆锥的侧面展开图,我们需要将圆锥展开成一个平面图形。
这可以通过将侧面按照一定顺序剪开,并展开到一个平面上来实现。
在展开的过程中,我们需要保持底面的圆形形状不变,并确保侧面的母线与底面保持相对位置不变。
展开后的侧面图是由一系列直线段构成的。
这些直线段代表了圆锥的侧面母线。
从顶点开始,我们可以看到侧面的直线段逐渐向底面延伸,并最终连接到底面边缘上。
展开后的侧面图呈现出一种锥形的形状,底面呈圆形,顶点在图形的中心位置。
圆锥的侧面展开图能够帮助我们更好地理解圆锥的结构和构造。
通过展开图,我们可以清晰地看到圆锥的母线如何连接到底面,并形成一个锥形的形状。
展开图还可以帮助我们计算圆锥的表面积和体积,以及分析其特性和功能。
在实际应用中,圆锥的侧面展开图被广泛应用于制作纸模、设计建筑物、制作工艺品等领域。
通过将圆锥展开成一个平面图形,我们可以更方便地制作和操作这些物品,并确保其形状和结构的准确性。
总结一下,圆锥的侧面展开图是将圆锥展开成一个平面图形以展示其构造和形状的方法。
通过展开图,我们可以更好地理解圆锥的特征和结构,并在应用中应用展开图进行设计和制作。
展开图提供了一种直观和清晰的方式来描述圆锥的形状和组成,对于学习和应用圆锥的几何学非常有帮助。
例 (1)若圆锥的底面半径是3cm ,母线长是5cm ,则它的侧面展开图的面积是2cm ______.(2)若圆锥的母线长为5cm ,高为3cm ,则其侧面展开图中扇形的圆心角是 度. 分析 首先弄清圆的侧面展开图是扇形,(1)中可直接用lR S 21=扇求得2cm 15π,(2)中先求底面圆半径,扇形弧长,再由弧长公式求圆内角为288°.例 一个圆锥的高是10㎝,侧面展开图是半圆,求圆锥的侧面积.分析:如图,欲求圆锥的侧面积,即求母线长l ,底面半径r .由圆锥的形成过程可知,圆锥的高、母线和底面半径构成直角三角形即SOA Rt ∆,且,,,10r OA l SA SO ===关键找出l 与r 的关系,又其侧面展开图是半圆,可得关系,222l lππ=,即r l 2=. 解:设圆锥底面半径r ,扇形弧长为C ,母线长为l , 由题意得,22lC π=又.2r C π= ,222l lππ=∴得r l 2= ① 在SOA Rt ∆中,22210+=r l ② 由①、②得:cm.2320cm,2310==l r ∴所求圆锥的侧面积为)cm (3200332033102πππ=⨯⨯==rl S例 圆锥的轴截面是等腰PAB ∆,EG ,2,3===AB PB PA M 是AB 上一点,且2=PM ,那么在锥面上A 、M 两点间的最短距离是多少?分析:设圆锥的侧面展开图是扇形,B PB 'A 点落在A '点,则所求A '、M 之间的最短距离就是侧面展开图中线段A 'M 的长度.解:如图,扇形的圆心角.12031360360οοο=⨯=⨯=l r ο60='∠∴PB A ,在PM A '∆中,过A '作PM N A ⊥'于N ,则,5.121='=A P PN ,3235.1322=-='∴N A MNA Rt '∆中,.74142722=+=+'='MN N A M A典型例题八例 已知一个三角形的边长分别为3 cm 、4 cm 、5 cm , 求以一边所在的直线为轴旋转一周形成的几何体的全面积.略解:如图,在△ABC 中,AB=5,AC=4,BC=3, ∵AB 2=AC 2+BC 2,∴∠C=90°. (1)当以AC 所在的直线为轴旋转一周时,形成的几何体是以底面半径为3,母线长为5的圆锥.π=+⨯⨯π=+=24)35(3S S S 侧底全(cm 2).(2)当以BC 所在的直线为轴旋转一周时,形成的几何体是以底面半径为4,母线长为5的圆锥.π=+⨯⨯π=+=36)45(4S S S 侧底全(cm 2).(3)当以AB 所在的直线为轴旋转一周时,形成的几何体是同底面的两个圆锥的侧组成的几何体,母线长分别为4、3. 圆锥的底面半径=512543=⨯ π=⨯⨯π+⨯⨯π=+=58435124512S S S 21侧侧全(cm 2). 说明:①分类思想;②圆锥的侧面积和表面积.典型例题九例 一个圆锥形的零件,经过轴的剖面是一个等腰直角三角形,求它的侧面展开图的中心角.解:设圆锥的母线SA=l ,底面半径为r ,则底边周长c=2πr ,即为展开扇形的弧长,这个扇形的半径为l ,它的中心角为α,则 c=πα180l , 又△ASB 为等腰直角三角形,∴l =2r . ∴r 2r 2180π=⋅πα,∴︒=α)2180(. 说明:圆锥展开图的应用,圆锥的侧面展开图是一个扇形,这个扇形的半径等于圆锥母线的345ABC 345ABCD长,扇形的弧长等于圆锥底面周长,千万不要借把圆锥底面的半径当作扇形的半径.典型例题十例矩形的边,,以为轴旋转一周得到的圆柱体的表面积是()(A)(B)(C)(D)分析与解答:圆柱表面积是两底面积之和加上侧面积.圆柱的侧面展开图是矩形.因此,圆柱的侧面积是矩形的面积,即底面周长()与圆柱的高(母线)的积,解之选(C ).典型例题十二例 一个圆锥的底面半径为10cm ,母线长20cm ,求:(1)圆锥的表面积;(2)圆锥的高;(3)轴与一条母线所夹的角;(4)侧面展开图扇形的圆心角.解 (1)).cm (30020010022πππππ=+=+=rl r S 圆锥表(2)如图,OS 为圆锥的高,在Rt OSA ∆中,31010202222=-=-=AS OA OS (cm ).(3)设轴与一条母线所夹的角为α,在Rt OSA ∆中,.30,21sin ︒=∴==ααOA AS (4)设侧面展开图扇形的圆心角度数为β,则由1802lr βππ=得︒=180β,∴侧面展开图扇形的圆心角为180°.说明:本题考查与圆锥有关的计算问题,解题关键是掌握与圆锥有关的性质与公式.典型例题十三例 一个圆锥形工件的轴截面是一个等腰直角三角形,这个直角三角形的斜边长为10厘米,现为这个工件刷油漆,若每平方厘米要2.5克油漆,问至少要油漆多少克(备用数据:π取3.14,2取1.41,结果精确到0.1)解 设圆锥的底面半径为r ,母线长为l ,表面积为S .∵圆锥的轴截面是等腰直角三角形,∴由勾股定理得.10222=+l l ∴25=l (负值已舍).又 )cm (19.189)525(514.3)(,510212≈+⨯⨯=+=∴=⨯=r l r S r π 则.0.47398.47219.1895.2≈=⨯答 至少要油漆473.0克.说明:本题考查圆锥表面积计算的应用,易错点是忽视精确度误得472.98克.例 (1)如果圆柱底面半径为4cm ,它的侧面积为2cm 64π,那么圆柱的母线长为( ). (A )16cm (B )16πcm (C )8cm (D )8πcm(2)如果圆柱底面直径为6cm ,母线长为10cm ,那么圆柱的侧面积为( ) (A )302cm π (B )602cm π (C )902cm π (D )1202cm π分析 圆柱侧面展开图是矩形,(1)可直接用公式求出母线长为8cm ,故选(C ),(2)中,由直径求出半径是关键,应选(B ).典型例题二例 已知矩形ABCD 一边AB=10cm ,AD=6 cm ,求以此矩形为侧面所围成圆柱的表面积.解:(1)以AD 为圆柱高围成圆柱,则底面圆的半径r=π5则圆柱表面积为π+=π⋅π⋅+=5060)5(260S 2. (2)以AB 为圆柱高围成圆柱,则底面圆的半径r=π3 则圆柱表面积为π+=π⋅π⋅+=1860)3(260S 2. 说明:①圆柱表面积的计算;②分类思想;③圆柱各元素的关系和计算.典型例题五例 已知矩形ABCD 一边AB=10cm ,AD=6 cm ,求以此矩形为侧面所围成圆柱的表面积.解:(1)以AD 为圆柱高围成圆柱,则底面圆的半径r=π5则圆柱表面积为π+=π⋅π⋅+=5060)5(260S 2. (2)以AB 为圆柱高围成圆柱,则底面圆的半径r=π3 则圆柱表面积为π+=π⋅π⋅+=1860)3(260S 2. 说明:①圆柱表面积的计算;②分类思想;③圆柱各元素的关系和计算.典型例题九例 一个圆锥形的零件,经过轴的剖面是一个等腰直角三角形,求它的侧面展开图的中心角.解:设圆锥的母线SA=l ,底面半径为r ,则底边周长c=2πr ,即为展开扇形的弧长,这个扇形的半径为l ,它的中心角为α,则 c=πα180l , 又△ASB 为等腰直角三角形,∴l =2r .∴r 2r 2180π=⋅πα,∴︒=α)2180(. 说明:圆锥展开图的应用,圆锥的侧面展开图是一个扇形,这个扇形的半径等于圆锥母线的长,扇形的弧长等于圆锥底面周长,千万不要借把圆锥底面的半径当作扇形的半径.典型例题七例 一个圆锥的侧面展开图是半径为18cm ,圆心角为240°的扇形,求这个圆锥的轴截面积.解:∵扇形的半径为18cm ,圆心角为240°,∴扇形的弧长L=π=⨯π⨯2418018240∵扇形弧长等于底面圆周长,∴圆锥的母线长为18cm ,底面半径=12224=ππcm ∴圆锥的高为56121822=-(cm ),∴圆锥的轴截面积S=572562421=⨯⨯(cm 2) 说明:巩固圆锥的各元素之间的关系,弧长公式和解直角三角形等知识的应用.典型例题六例 已知一个圆柱的轴截面是一个面积为16cm 2的正方形,求它们侧面积. 解:∵圆柱的轴截面是正方形,且面积为16cm 2∴圆柱的高为4cm ,圆柱底面直径也是4cm 即底面半径为2cm .∴圆柱的侧面积=2π×2×4=16πcm 2.说明:此题为基础题.应用圆柱轴截面的特征,圆柱各元素的关系,侧面积计算.典型例题一例 矩形的边,,以为轴旋转一周得到的圆柱体的表面积是()(A)(B)(C)(D)分析与解答:圆柱表面积是两底面积之和加上侧面积.圆柱的侧面展开图是矩形.因此,圆柱的侧面积是矩形的面积,即底面周长()与圆柱的高(母线)的积,解之选(C ).典型例题七例 一个圆锥的侧面展开图是半径为18cm ,圆心角为240°的扇形,求这个圆锥的轴截面积.解:∵扇形的半径为18cm ,圆心角为240°,∴扇形的弧长L=π=⨯π⨯2418018240∵扇形弧长等于底面圆周长,∴圆锥的母线长为18cm ,底面半径=12224=ππcm ∴圆锥的高为56121822=-(cm ), ∴圆锥的轴截面积S=572562421=⨯⨯(cm 2) 说明:巩固圆锥的各元素之间的关系,弧长公式和解直角三角形等知识的应用.典型例题四例 已知一个圆柱的轴截面是一个面积为16cm 2的正方形,求它们侧面积. 解:∵圆柱的轴截面是正方形,且面积为16cm 2∴圆柱的高为4cm ,圆柱底面直径也是4cm 即底面半径为2cm .∴圆柱的侧面积=2π×2×4=16πcm 2.说明:此题为基础题.应用圆柱轴截面的特征,圆柱各元素的关系,侧面积计算.典型例题五例 (1)若圆锥的底面半径是3cm ,母线长是5cm ,则它的侧面展开图的面积是2cm ______.(2)若圆锥的母线长为5cm ,高为3cm ,则其侧面展开图中扇形的圆心角是 度. 分析 首先弄清圆的侧面展开图是扇形,(1)中可直接用lR S 21=扇求得2cm 15π,(2)中先求底面圆半径,扇形弧长,再由弧长公式求圆内角为288°.典型例题十一例 已知:斜边,以直线为轴旋转一周得一表面积为的圆锥,则这个圆锥的高等于 .分析与解答:圆锥的表面积是底面积与圆锥侧面积之和.圆锥的侧面展开图是扇形.圆锥的侧面积是扇形的面积,即等于底面周长×母线长的一半.此题在分析中要结合图形(如图)弄清欲求圆锥的高即为的长,关键在于求底面半径,不妨设,则,即可求出,解之得高=12cm.典型例题八例 已知一个三角形的边长分别为3 cm 、4 cm 、5 cm , 求以一边所在的直线为轴旋转一周形成的几何体的全面积.略解:如图,在△ABC 中,AB=5,AC=4,BC=3, ∵AB 2=AC 2+BC 2,∴∠C=90°. (1)当以AC 所在的直线为轴旋转一周时,形成的几何体是以底面半径为3,母线长为5的圆锥.π=+⨯⨯π=+=24)35(3S S S 侧底全(cm 2).(2)当以BC 所在的直线为轴旋转一周时,形成的几何体是以底面半径为4,母线长为5的圆锥.π=+⨯⨯π=+=36)45(4S S S 侧底全(cm 2).(3)当以AB 所在的直线为轴旋转一周时,形成的几何体是同底面的两个圆锥的侧组成的几何体,母线长分别为4、3. 圆锥的底面半径=512543=⨯ π=⨯⨯π+⨯⨯π=+=58435124512S S S 21侧侧全(cm 2). 说明:①分类思想;②圆锥的侧面积和表面积.典型例题六例 一个圆锥的高是10㎝,侧面展开图是半圆,求圆锥的侧面积.分析:如图,欲求圆锥的侧面积,即求母线长l ,底面半径r .由圆锥的形成过程可知,圆锥的高、母线和底面半径构成直角三角形即SOA Rt ∆,且,,,10r OA l SA SO ===关键找出l 与r 的关系,又其侧面展开图是345ABC 345ABCD半圆,可得关系,222l lππ=,即r l 2=. 解:设圆锥底面半径r ,扇形弧长为C ,母线长为l , 由题意得,22lC π=又.2r C π= ,222l lππ=∴得r l 2= ① 在SOA Rt ∆中,22210+=r l ② 由①、②得:cm.2320cm,2310==l r ∴所求圆锥的侧面积为)cm (3200332033102πππ=⨯⨯==rl S典型例题十例 已知:斜边,以直线为轴旋转一周得一表面积为的圆锥,则这个圆锥的高等于 .分析与解答:圆锥的表面积是底面积与圆锥侧面积之和.圆锥的侧面展开图是扇形.圆锥的侧面积是扇形的面积,即等于底面周长×母线长的一半.此题在分析中要结合图形(如图)弄清欲求圆锥的高即为的长,关键在于求底面半径,不妨设,则,即可求出,解之得高=12cm.典型例题十二例 一个圆锥的底面半径为10cm ,母线长20cm ,求:(1)圆锥的表面积;(2)圆锥的高;(3)轴与一条母线所夹的角;(4)侧面展开图扇形的圆心角.解 (1)).cm (30020010022πππππ=+=+=rl r S 圆锥表(2)如图,OS 为圆锥的高,在Rt OSA ∆中,31010202222=-=-=AS OA OS (cm ).(3)设轴与一条母线所夹的角为α,在Rt OSA ∆中,.30,21sin ︒=∴==ααOA AS (4)设侧面展开图扇形的圆心角度数为β,则由1802lr βππ=得︒=180β,∴侧面展开图扇形的圆心角为180°.说明:本题考查与圆锥有关的计算问题,解题关键是掌握与圆锥有关的性质与公式.典型例题十三例 一个圆锥形工件的轴截面是一个等腰直角三角形,这个直角三角形的斜边长为10厘米,现为这个工件刷油漆,若每平方厘米要2.5克油漆,问至少要油漆多少克(备用数据:π取3.14,2取1.41,结果精确到0.1)解 设圆锥的底面半径为r ,母线长为l ,表面积为S .∵圆锥的轴截面是等腰直角三角形,∴由勾股定理得.10222=+l l ∴25=l (负值已舍).又 )cm (19.189)525(514.3)(,510212≈+⨯⨯=+=∴=⨯=r l r S r π 则.0.47398.47219.1895.2≈=⨯答 至少要油漆473.0克.说明:本题考查圆锥表面积计算的应用,易错点是忽视精确度误得472.98克.典型例题十二例 圆锥的轴截面是等腰PAB ∆,EG ,2,3===AB PB PA M 是AB 上一点,且2=PM ,那么在锥面上A 、M 两点间的最短距离是多少?分析:设圆锥的侧面展开图是扇形,B PB 'A 点落在A '点,则所求A '、M 之间的最短距离就是侧面展开图中线段A 'M 的长度.解:如图,扇形的圆心角.12031360360οοο=⨯=⨯=l r ο60='∠∴PB A ,在PM A '∆中,过A '作PM N A ⊥'于N ,则,5.121='=A P PN ,3235.1322=-='∴N A MNA Rt '∆中,.74142722=+=+'='MN N A M A典型例题三例 (1)如果圆柱底面半径为4cm ,它的侧面积为2cm 64π,那么圆柱的母线长为( ). (A )16cm (B )16πcm (C )8cm (D )8πcm(2)如果圆柱底面直径为6cm ,母线长为10cm ,那么圆柱的侧面积为( ) (A )302cm π (B )602cm π (C )902cm π (D )1202cm π分析 圆柱侧面展开图是矩形,(1)可直接用公式求出母线长为8cm ,故选(C ),(2)中,由直径求出半径是关键,应选(B ).填空题1.用边长分别为π8和π6的矩形卷成圆柱,则圆柱的底面面积是 . 2.如果圆锥的高为8㎝,圆锥的底面半径为6㎝,那么它的侧面展开图的面积为 . 3.已知矩形ABCD ,一边AB=30㎝,另一边AD =9㎝,以直线AB 为轴旋转一周所得到的圆柱的表面积为 2cm (结果用π表示).4.已知一矩形的长为AB =6,宽AD =4,若以它垂直于一组对边的对称轴为轴旋转180°,得到的立体图形的表面积为 .5.用一个圆心角为120°,半径为4的扇形做一个圆锥,那么这个圆锥的底面周长为 .6.用过轴线的平面把一个圆锥剖开得到一个等腰直角三角形,则这个圆锥的底面半径是高的 倍,母线是高的 倍.7. 圆柱的高与底面直径相等,如果它的侧面积为S ,则底面积是________8. 矩形ABCD 的边cm 4=AB ,cm 2=AD ,以直线AD 为轴旋转一周,所得的圆柱的侧面积是_______2cm9. 底面直径是0cm 1,高是cm 12的圆锥,沿它的轴剖开得到一个______三角形,该三角形的面积是______2cm10. 一个圆锥形零件的高为0cm 1,若经过轴的剖面是一个等腰直角三角形,则这个圆锥的底面半径为______cm ,母线长为______cm ,侧面积为______2cm ,表面积为_____2cm 11. 若一圆锥的侧面积为415π,母线长为3,则侧面展开图的圆心角为________. 12.若一个圆锥的母线长是5cm ,底面半径是3cm ,则它的侧面展开图的面积是 2cm . 13.一位同学制作一圆锥模型,这个模型的侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮制作,再用一块圆铁片做底,那么这块圆铁片的半径为 . 14.已知圆柱底面半径为π2,高为10,则圆柱侧面积是 .参考答案:1.;916ππ和 2.π60; 3.π702; 4.ππ3242或; 5.38π;6.1,2.7.4S8. π16 9. 等腰 60 10. cm 10,cm 210,2cm 2100π 2cm )12(100π+11. ︒150. 12.π1513.6cm 14.40.选择题1.在矩形ABCD 中,CA AB ≠,分别以直线AB ,AC 为轴旋转一周得两个圆柱,这两个圆柱的底面积与侧面积分别有什么关系?() A .底面积相等,侧面积也相等 B .底面积不等,侧面积相等 C .底面积相等,侧面积不相等 D .底面积不等,侧面积也不等2.如图,已知圆锥的高为cm 4,底面半径为cm 3,则圆锥侧面展开图的面积为()A .2cm 9πB .2cm 15πC .2cm 24πD .2cm 30π3.一个圆锥的高为cm 310,侧面展开后是一个半圆,则圆锥的表面积是() A .2cm 002π B .2cm 003π C .2cm 004πD .2cm 603π4.在ABC ∆中,︒=∠90C ,a BC =,b AC = )(b a >,分别以AC ,BC 所在的直线为轴旋转一周,所得的圆锥的侧面积依次记为1S ,2S ,则1S 和2S 的大小关系为() A .21S S >B .21S S =C .21S S <D .以上情况都有可能5.一个圆柱的侧面展开图是正方形,那么它的侧面积和底面积的比是( )(A )1 (B )π (C )π4 (D )46.在△ABC 中,,90,4,3ο=∠==A AC AB 把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为1S ;把Rt △ABC 绕直线AB 一周得到另一个圆锥,其表面积为2S ,则=21:S S ( )(A )3:2 (B )4:3 (C )9:4 (D )56:397.已知一个扇形的半径为60厘米,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( )(A )12.5厘米 (B )25厘米 (C )50厘米 (D )75厘米8.一个圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是( )(A )60° (B )90° (C )120° (D )180°9.如果圆柱的底面直径为4,母线长为2,那么圆柱的侧面展开图的面积等于( )(A )π8 (B )π4 (C )π16 (D )810.一张矩形纸片,两边长分别为2cm 和4cm ,以它的一边所在直线为轴旋转一周,所得的圆柱的表面积一定是( )(A )2cm 24π或2cm 48π (B )2cm 32π或2cm 20π (C )2cm 24π或2cm 32π (D )2cm 20π或2cm 48π参考答案:1.B 2. B 3. B 4. A 5.C ; 6.A ; 7.B ; 8.D. 9.A 10.A.解答题1.已知圆柱的底面半径为2cm ,圆柱的高为3cm .求它的侧面积. 2.已知圆柱的底面直径为4cm ,圆柱的高为5cm .求它的全面积. 3.已知圆拄的高为4cm ,侧面积为40πcm 2.求它的全面积.4.已知矩形ABCD 中,AB=4cm ,BC=2cm ,以AB 为轴旋转一周,补上底面,求所成的圆柱的全面积;再以BC 为轴旋转一周,补上底面.求所成的圆柱的全面积.比较一下两个圆柱全面积的大小.5.已知圆锥的母线长为6cm ;底面半径为2cm .求它侧面展开图的圆心角的度数. 6.已知扇形的半径为4cm ,圆心角为120°,用它做成一个圆锥.求圆锥的底面面积. 7.已知圆锥的高为6cm ,底面半径为8cm .求这个圆锥的侧面积. 8.在如图所示的矩形ABCD 中,cm 2=AB ,cm 3=BC ,MN 是它的一条对称轴。