新人教版八上数学优秀教案:乘法公式教案
- 格式:doc
- 大小:690.00 KB
- 文档页数:9
14.2 乘法公式教案 2022-2023学年人教版八年级数学上册一、教学目标1.掌握乘法公式的概念和基本用法;2.理解乘法公式在实际问题中的应用;3.能够灵活运用乘法公式解决具体问题。
二、教学重点1.理解乘法公式的概念;2.熟练应用乘法公式解决问题。
三、教学难点理解乘法公式在实际问题中的应用。
四、教学过程1. 导入通过一个实际问题导入本节课的内容,激发学生的思考和兴趣。
例如:某超市正在举办特价活动,A商品的原价为10元,现在打八折出售,你能快速计算出它的现价吗?2. 学习乘法公式•引导学生理解乘法公式的概念:乘法公式是指将两个或多个数相乘的表达式,一般用字母如a、b等表示。
•介绍乘法公式的基本形式:a × b = c,其中a和b是被乘数、乘数,c是积。
•给出一些示例,帮助学生理解乘法公式的具体运用。
3. 习题训练让学生在黑板上解答一些乘法公式相关的习题,巩固所学内容。
例如: - 计算:3 × 4 = ?,5 × 7 = ?; - 根据给出的乘法公式计算:12 × 6 = ?,8 × 9 = ?; - 利用乘法公式解决实际问题:张三身高1.6米,若每一步行走的距离为0.5米,他需要走多少步才能达到2.5米的目标?4. 拓展应用通过一些拓展应用题,帮助学生将乘法公式应用到实际生活中。
例如: - 根据乘法公式计算某商品的折扣价; - 计算某地每天用水50吨,连续用水5天,总共用水多少吨?5. 小结和提高对本节课所学的内容进行小结,帮助学生复习和巩固知识点。
同时,提出一些提高题,鼓励学生进行拓展思考。
例如:如果一个数与0相乘,结果是多少?如果两个数相乘的积为0,那这两个数之一一定为0吗?五、课堂练习让学生在课堂上完成一些习题,检验他们对乘法公式的掌握情况。
同时,教师可以对学生的答题情况进行及时批改,帮助他们加强对乘法公式的理解。
六、课后作业布置乘法公式相关的课后作业,要求学生独立完成并提交。
14.2 乘法公式第1课时平方差公式教学目标1.经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的运算.2.理解平方差公式的结构特征,灵活应用平方差公式.教学重点平方差公式的推导和应用.教学难点理解平方差公式的结构特征,灵活应用平方差公式.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标从前,有一个狡猾的庄园主,把一块边长为x米的正方形土地租给张老汉种植,第二年,他对张老汉说:“我把这块地的一边增加5米,另一边减少5米,继续租给你,租金不变,你也没有吃亏,你看如何?”张老汉一听觉得好像没有吃亏,就答应了,回到家中,把这事和邻居们一讲,都说:“张老汉,你吃亏了!”张老汉非常吃惊.同学们,你知道张老汉为什么吃亏吗?通过本节课的学习,你将能解释这其中的原因!二、自主学习,指向目标自学教材第107页至108页,思考下列问题:1.根据条件列式:(1)a、b两数的平方差可以表示为________;(2) a、b两数差的平方可以表示为________;2.平方差公式的推导依据是________________________________________________________________________.3.平方差公式(乘法)的特征是:左边是__________________,右边是__________________.三、合作探究,达成目标探究点一探索平方差公式活动一:1.填写教材P107三个计算结果,展示点评:(1)二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(二项)(2)观察上列算式的左边的两个二项式,有什么异同?运算出结果后的二项式与等式左边的二项式有什么关系?(等号的左边是两数的和乘以这两数的差,等号的右边是这两数的平方差.)2.归纳:两个数的________与这两个数的差的积,等于这两数的________.用公式表示上述规律为:(a+b)(a-b) =________这就是平方差公式.3.观察教材图14.2-1,请你用两种方法计算图形中阴影部分的面积,得到什么结果?(a+b)(a-b)=a2-b24.观察教材P108例1中的两个算式,能否用平方差公式进行计算?若能用,公式中a,b分别代表什么?例1运用平方差公式计算(1)(3x+2)(3x-2);(2)(-x+2y)(-x-2y).思考:确定能否应用平方差公式进行运算的关键是什么?展示点评:观察算式:①是不是两个二项式相乘;②是不是两数的和乘以两数的差;③若作为因式的二项式的首项是负号的,可以连同符号一起看作为一项,也可以把一个因式里的两项颠倒位置观察思考.关键就是确定是不是两数的和乘以两数的差.解答过程见课本P108例1小组讨论:能运用平方差公式计算的式子有何特征?【反思小结】能运用平方差公式进行计算的式子特征:①二项式与二项式的积;②把两个二项式进行对比:有一项相同,另一项互为相反数.针对训练:1.计算(2a+5)(2a-5)等于( A )A.4a2-25 B.4a2-5 C.2a2-25 D.2a2-52.计算(1-m)(-m-1),结果正确的是( B )A.m2-2m-1 B.m2-1 C.1-m2 D.m2-2m+1探究点二平方差公式的综合应用活动二:计算:(1)102×98;(2)(y+2)(y-2)-(y-1)(y+5).展示点评:(1)例1是数的计算,观察其特征,把两个因数如何变形能够运用平方差公式进行计算?(2)例2中有整式的简单的混合运算,在进行运算时要注意什么?展示点评:第1题可以变为100与2的和乘以100与2的差;第(2)题中多项式的乘法,能运用平方差公式的一定要运用平方差公式进行运算.解答过程见课本P108例2小组讨论:平方差公式与整式乘法有什么关系?在运用时应注意什么问题?【反思小结】(1)可运用平方差公式运算的式子,也属于我们前面所学的多项式乘以多项式的运算,所以说平方差公式适用于特殊形式的该类运算.(2)有些不能直接用平方差公式的题目可向公式形式转化,写成两数和与两数差乘积的形式,再运用公式.(3)在运用平方差公式运算时,一要注意确定好公式中的“a”项,“b”项;二要注意对两个数整体平方,而不是部分平方.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.平方差公式的特征,公式中的字母a和b既可以表示数,也可表示字母,还可以表示多项式;2.能应用平方差公式进行乘法运算,并能进行简单变形应用.3.平方差公式与多项式乘法之间的关系.五、达标检测,反思目标1.下列多项式乘法,能用平方差公式进行计算的是( C )A.(x+y)(-x-y) B.(2x+3y)(2x-3z)C.(-a-b)(a-b) D.(m-n)(n-m)2.下列各式运算结果是x2-25y2的是( B )A.(x+5y)(-x+5y) B.(-x-5y)(-x+5y)C.(x-y)(x+25y) D.(x-5y)(5y-x)3.两个连续奇数的平方差是( B )A.6的倍数B.8的倍数C.12的倍数D.16的倍数4.计算:(2+3x)(-2+3x)=__9x2-4__.5.已知(x-ay)(x+ay)=x2-16y2,那么a=__±4__.6.计算:(1)a(a-5)-(a+6)(a-6)解:原式=a2-5a-(a2-36)=36-5a(2)(x+y)(x-y)(x2+y2)解:原式=(x2-y2)(x2+y2)=x4-y4(3)9982-4解:原式=(998+2)(998-2)=1000×996=996000●布置作业,巩固目标教学难点1.上交作业:课本P112第1题.2.课后作业:见《学生用书》.第2课时完全平方公式教学目标1.理解完全平方公式,掌握两个公式的结构特征.2.熟练应用公式进行计算.教学重点完全平方公式的推导过程、结构特点以及几何解释,并能灵活应用.教学难点理解完全平方方式的结构特征,并能灵活应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.多项式乘以多项式的法则是什么?(多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)2.观察下列计算过程及结果:(1)(p+q)(p+q)=________________=________________;(2)(x-y)(x-y)=________________=________________.展示点评:怎样快速的计算形如(2x+y)2的运算,这就是我们今天所要学习的主要内容.二、自主学习,指向目标自学教材第109页至110页,思考下列问题:1.完全平方公式的推导的依据多项式乘以多项式的乘法法则2.完全平方公式的特征是:左边是两数和(或差)的平方,右边是这两数的平方和,加上(或减去)这两数积的2倍;与平方差公式的区别是平方差公式是两数的和乘以两数的差,等于这两数的平方差,其结果是一个二项式.3.从几何的角度去理解完全平方公式,观察下图,可以得到:(1)(a+b)2=________;(2)(a-b)2=________.三、合作探究,达成目标 探究点一 完全平方公式活动一:1.根据条件列式:(1)a ,b 两数和的平方可以表示为________; (2)a ,b 两数平方的和可以表示为________. 2.填写教材P 109四个计算结果. 展示点评:(1)一个多项式的平方运算可以看做哪种形式的运算(两个相同的多项式的乘法运算) (2)课本中的二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(三项)(3)上列算式运算的依据是什么? (依据是多项式乘以多项式的乘法法则) (4)观察上列算式,运算出结果后的三项式与等式左边的二项式有什么关系?(等号的左边是两数的和或差的平方;等号的右边是这两数的平方和,加上或减去这两数积的2倍.)3.归纳:由上述规律可得到公式:(a +b)2=________;(a -b)2=________. 完全平方公式:两数和(或差)的平方等于这两个数的______加上(或减去)这两个数积的______倍.可记作:首平方,尾平方,二倍乘积放中央.4.观察教材图14 .2-2及14 .2-3你通过图形中的面积,得到什么结果?(a +b)2=a 2+ab +b 2+ab =a 2+2ab +b 2;(a -b)2=a 2-ab -ab +b 2=a 2-2ab +b 2; 5.观察教材P 110例3中的两个算式,能否用完全平方公式进行计算?若能用,公式中a ,b 分别代表什么?例1 运用完全平方公式计算:(1)(4m +n)2(2)⎝ ⎛⎭⎪⎫y -122(3)(-2a -3b)2展示点评:从平方的意义看,⎝ ⎛⎭⎪⎫y -122与⎝ ⎛⎭⎪⎫12-y 2的结果一样吗?(-2a -3b)2与(-3b -2a)2的结果相同吗?而(4m +n)2与(4m -n)2的结果呢?展示点评:互为相反数的平方结果相等,因此(y -12)2与(12-y)2的结果一样;而4m +n与4m -n 不一定相等或是相反数,因此其平方的结果不一定相等.小组讨论:应用完全平方公式计算应注意什么? 解答过程见课本P 110例3反思小结:1.应用公式时,可以先确定两数的平方和,再加上(或减去)两数积的2倍;切记不要漏掉两数积的2倍;2.互为相反数的两个多项式的平方相等.针对训练:见《学生用书》相应部分 探究点二 完全平方公式的综合应用 活动二:运用完全平方公式计算:(1)1022 (2)992小组讨论:一个较大或较小数的平方运算,如何巧妙地进行变形,应用完全平方公式,快速的进行计算呢?展示点评:把102或99写成两数和或差的形式,再进行计算.反思小结:对于较大数的平方可以转化成两整数和(或差)的平方,再运用完全平方公式进行计算比较简便.针对训练:见《学生用书》相应部分 四、总结梳理,内化目标1.完全平方公式的推导及其几何意义;2.完全平方公式里的字母可以表示一个数,表示一个单项式,也可以表示一个多项式; 3.应用完全平方公式进行计算,有关数字计算题应用完全平方公式可以使计算简便. 4.数学思想:类比、数形结合. 五、达标检测,反思目标1.( x +3y )2=x 2+6xy +__9y 2__.2.a 2-kab +9b 2是完全平方式,则k =__±6__.3.计算(-a -b)2结果是( B )A .a 2-2ab +b 2B .a 2+2ab +b 2C .a 2+b 2D .a 2-b 24.运用乘法公式计算(1)⎝ ⎛⎭⎪⎫12x -12; (2)1052; 解:(1)原式=14x 2-x +1(2)原式=(100+5)2=1002+2×100×5+25 =10000+1025 =11025(3)(a -b -3)(a -b +3).解:原式=[(a -b )-3][(a -3)+3]=(a -b )2-9 =a 2-2ab +b 2-95.已知x +y =9,xy =20,求(x -y)2的值.解:(x -y )2=(x +y )2-4xy =81-80=1 ●布置作业,巩固目标教学难点1.上交作业:课本第112页2、3(2)(3)、7. 2.课后作业:见《学生用书》.第3课时 乘法公式的拓展教学目标1.了解添括号法则.2.能应用添括号法则,结合乘法公式,对项数是三项或三项以上的多项式乘法进行运算.教学重点应用添括号法则及乘法公式进行运算.教学难点正确的添加括号后,应用公式进行计算.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.去括号法则是什么?(如果括号前面是正号,去掉括号后,括号里的各项不变号;如果括号前面是负号,去掉括号后,括号里的各项都要变号.)2.我们学过的乘法公式有哪些,你能完整的叙述出来吗?(平方差公式,完全平方公式)3.对于形如(x+2y-3)(x-2y+3)的乘法可以怎样运算呢?你能运用比较简便的方法运算吗?这就是我们这节课主要学习的内容.二、自主学习,指向目标1.添括号的法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.它和去括号的联系是互逆变形.2.试一试,在括号内添加适当的项:(1) (x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)](2)x-2y-4x=x-2(y+2x)三、合作探究,达成目标探究点一添括号法则活动一:去括号:a+(b+c)=________;a-(b-c)=________反过来,你能给下列多项式添括号吗:a+b+c=a+(b+c) a-b-c=a-(b+c)展示点评:添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.小组讨论:添括号法则与去括号法则有什么关系?反思小结:添括号法则与去括号法则是互逆变形的过程,其符号变化与去括号法则变化一样.针对训练:见《学生用书》相应部分探究点二乘法公式的推广活动二:平方差公式:(a+b)(a-b)=________完全平方公式:(a±b)2=________公式中的a 和b是一个字母,可以是一个多项式吗?如果a或b是一个多项式,如何运算?(a和b可以代替一个多项式,计算时可以看作一个整体先按照乘法公式进行计算,然后再根据相应的法则,再进行运算.)例1运用乘法公式计算:(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2思考:第(1)题首先要应用添括号法则进行变形,需要应用几次公式,应用的公式相同吗?第(2)题与第(1)题的形式、运算过程和方法有何区别?展示点评:第1小题中先应用添括号法则把两个因式内互为相反数的两项结合变成两数的和乘以两数差的形式,先进行运算,再运用完全平方公式乘开,能合并同类项的一定要合并同类项;第2小题中应用加法交换与结合律,任意结合其中两项,应用两次完全平方公式即可.解答过程见课本P 111例5小组讨论:第(1)(2)题在添括号时,有什么相同点和不同点?【反思小结】两个多项式相乘,若两个多项式中既有相同的项,又有互为相反数的项,且没有其它的项,则要运用添括号法则把相同的项或互为相反数的项,分别括起来,把添到括号内的多项式当做一个整体,再进行计算.针对训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.添括号法则;2.乘法公式里的字母可以表示一个数,表示一个单项式,也可以表示一个多项式;因此对于项数是三项或三项以上的多项式乘法,根据乘法的形式,添加适当的括号,再运用乘法公式运算.五、达标检测,反思目标 1. 判断下列变形是否正确.(1)2a -b -c 2=2a -(b -c2)(2)m -3n +2a -b =m +(3n +2a -b)(3)2x -3y +2=-(2x +3y -2)(4)a -2b -4c +5=(a -4c)-(2b -5) 解:(1)(2)(3)都错误,(4)正确2.下列式子:①(3x+1)(3x -1)=(3x -1)2;②(x-3y)2=x 2-3xy +9y 2;③(1-2xy 2)2=1-4x 2y 4;④(a +1a )2=a 2+2+1a2;其中正确的是( D )A .①B .①②C .①②③D .④3.如果x +y =-7,xy =12, 那么x 2-xy +y 2的值为( C ) A .61 B .37 C .13 D .11 4.运用乘法公式计算(1)(a -b -3)(a -b +3) (2)(a +2b -1)2解:(1)原式=[(a -b )-3][(a -b )+3]=(a -b )2-9 =a 2-2ab +b 2-9 解:原式=[(a +2b )-1]2=(a +2b )2-2(a +2b )+1 =a 2+4ab +4b 2-2a -4b +15.求证:无论x ,y 为何值时,多项式x 2+y 2-2x +6y +10的值恒大于负数.解: x 2+y 2-2x +6y +10 =x 2-2x +1+y 2+6y +9=(x -1)2+(y +3)2∵(x -1)2≥0, (y +3)2≥0 ∴x 2+y 2-2x +6y +10≥0即无论x ,y 为何值时,多项式x 2+y 2-2x +6y +10的值恒为非负数.。
人教初中数学八上《乘法公式》完全平方公式教案【教案】一、教学目标:1.知识与技能:掌握乘法公式和完全平方公式的基本概念和计算方法。
2.过程与方法:培养学生观察问题、发现问题和解决问题的能力,培养学生合作学习的能力。
3.态度与价值观:培养学生对数学的兴趣,增强学生学习数学的自信心。
二、教学重点和难点:1.教学重点:乘法公式和完全平方公式的基本概念和计算方法。
2.教学难点:如何应用乘法公式和完全平方公式进行复杂问题的求解。
三、教学过程:1.导入新旧知识:引导学生回顾乘法的基本概念和运算规则,提醒学生乘法公式与乘法的关系。
2.学习乘法公式:a.引入例子:例如,计算(a+b)²=?,学生根据分配律,可以计算出:(a + b)² = a² + b² + 2abb.导出乘法公式:老师引导学生通过上述例子的观察,总结得到乘法公式的一般表示形式。
c.练习:让学生在小组内互相出题,计算出(a+b)²、(a-b)²、(a+b)·(a-b)。
3.学习完全平方公式:a.引入例子:例如,计算(a-b)²=?,学生根据乘法公式的改写形式,可以计算出:(a - b)² = a² - 2ab + b²b.导出完全平方公式:老师引导学生通过上述例子的观察,总结得到完全平方公式的一般表示形式。
c.练习:让学生在小组内互相出题,计算出(a+b)²、(a-b)²、(a+b)·(a-b)。
4.拓展应用:让学生通过实际问题进行乘法公式和完全平方公式的应用。
例如,有一块田地,长为(a+b)米,宽为(a-b)米,求该田地的面积。
解:田地的面积为(a+b)·(a-b)平方米,根据乘法公式,可化简为a²-b²平方米。
五、师生互动:在学生解答问题的过程中,老师及时给予肯定和鼓励,引导学生提出自己的思路和解题方法。
人教版数学八年级上册《第十二课时乘法公式的综合应用》教案一. 教材分析人教版数学八年级上册《第十二课时乘法公式的综合应用》这一课时,是在学生掌握了平方差公式、完全平方公式等基本乘法公式的基础上进行教学的。
本课时主要让学生进一步理解乘法公式的结构特征,提高学生灵活运用乘法公式解决实际问题的能力,培养学生的逻辑思维能力和创新思维能力。
二. 学情分析八年级的学生已经掌握了平方差公式、完全平方公式等基本乘法公式,对公式有一定的理解,但在运用公式解决实际问题时,往往会因为对公式的理解不够深入而出现错误。
此外,学生的逻辑思维能力和创新思维能力还有待提高,因此,在教学中,需要引导学生深入理解乘法公式的结构特征,培养学生灵活运用公式解决实际问题的能力。
三. 教学目标1.知识与技能目标:让学生进一步理解乘法公式的结构特征,提高学生灵活运用乘法公式解决实际问题的能力。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生独立解决问题的能力,提高学生的逻辑思维能力和创新思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性,培养学生的团队协作精神和积极进取的精神。
四. 教学重难点1.教学重点:让学生进一步理解乘法公式的结构特征,提高学生灵活运用乘法公式解决实际问题的能力。
2.教学难点:如何引导学生深入理解乘法公式的结构特征,如何培养学生灵活运用公式解决实际问题的能力。
五. 教学方法1.自主学习法:引导学生独立思考,自主探究,提高学生的独立解决问题的能力。
2.合作交流法:鼓励学生之间相互讨论、交流,培养学生的团队协作精神。
3.启发式教学法:教师通过提问、设疑,引导学生深入思考,激发学生的创新思维。
六. 教学准备1.教师准备:教师需要对乘法公式有深入的了解,以便在教学中引导学生深入理解乘法公式的结构特征。
2.学生准备:学生需要预习平方差公式、完全平方公式等基本乘法公式,以便在课堂上更好地理解和运用。
14.2 乘法公式教案一、教学目标1.了解乘法公式的基本概念和用途;2.掌握乘法公式的运用方法;3.能够灵活运用乘法公式解决实际问题。
二、教学准备1.教材《数学》(人教版)八年级上册;2.课件、投影仪等教学工具。
三、教学过程1. 导入与激发兴趣(5分钟)通过展示一道有关乘法的实际问题,激发学生对乘法公式的兴趣,并引出乘法公式的概念。
问题:小明一共有3个口袋,每个口袋里都装满了红色和蓝色的小球。
第一个口袋里有2个红球和3个蓝球,第二个口袋里有4个红球和2个蓝球,第三个口袋里有3个红球和5个蓝球。
如果从这3个口袋中随机选择一个球,那么选择蓝球的概率是多少?2. 乘法公式的引入与讲解(20分钟)通过上述实际问题的引导,引出乘法公式的概念和思想。
乘法公式的概念:乘法公式是指将两个或多个数相乘的运算法则。
在乘法公式中,被乘数、乘数和积分别称为乘法的三个基本要素。
乘法公式的运用方法:乘法公式的运用方法分为两种情况:已知两个乘法因子和求积、已知积和一个乘法因子求另一个乘法因子。
1.已知两个乘法因子和求积:例如,已知 a 和 b,求a × b。
解题时,直接将 a 与 b 相乘即可,即 a × b = c。
2.已知积和一个乘法因子求另一个乘法因子:例如,已知 a 和 c,求 b。
解题时,可以通过反向运算,将积 c 除以已知乘数 a,即 b = c / a。
3. 乘法公式的练习与应用(20分钟)练习1:已知两个乘法因子和求积1.计算下列各式的值:a)2 × 3 = ?b)4 × 5 = ?c)7 × 8 = ?d)9 × 10 = ?e)12 × 13 = ?2.根据实际情况填写空缺:a)一包饼干有 4 行,每行有 5 个,共有 ___ 个饼干。
b)一桶矿泉水有 6 瓶,每瓶有 8 升,共有 ___ 升矿泉水。
c)一根手指有 3 节,每节有 4 个关节,共有 ___ 个关节。
人教版八年级数学上册教学设计14.2 乘法公式一. 教材分析人教版八年级数学上册的教学内容涉及平面几何、立体几何、代数、概率等多个方面,其中第14章“整式乘法”是基础也是重点。
本节课的内容“乘法公式”是整式乘法中的一个重要部分,主要包括平方差公式和完全平方公式的探究和应用。
平方差公式和完全平方公式在解决实际问题中有着广泛的应用,是学生必须掌握的基础知识。
二. 学情分析学生在七年级时已经学习了有理数的乘法、幂的运算等基础知识,对整式的乘法有了一定的了解。
但平方差公式和完全平方公式的推导和应用还需要通过实例和练习来加深理解。
此外,学生可能对公式的记忆和应用存在困难,需要通过反复练习和实际问题来提高应用能力。
三. 教学目标1.知识与技能:掌握平方差公式和完全平方公式的推导过程和应用方法。
2.过程与方法:通过探究、合作、交流的方式,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:平方差公式和完全平方公式的推导和应用。
2.难点:对平方差公式和完全平方公式的理解和灵活应用。
五. 教学方法采用探究式教学法、合作学习法和案例教学法。
通过引导学生自主探究、合作交流,以实际问题为载体,让学生在实践中理解和掌握平方差公式和完全平方公式。
六. 教学准备1.准备相关的基础知识和例题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题和测试题,以检验学生的学习效果。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题:已知正方形的面积是20,求这个正方形的边长。
让学生思考如何解决这个问题,从而引出平方公式。
呈现(10分钟)1.平方差公式:a² - b² = (a + b)(a - b)2.完全平方公式:a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²通过讲解和示例,让学生理解平方差公式和完全平方公式的推导过程和应用方法。
14.2乘法公式第1课时平方差公式教学目标1.经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的运算.2.理解平方差公式的结构特征,灵活应用平方差公式.教学重点平方差公式的推导和应用.教学难点理解平方差公式的结构特征,灵活应用平方差公式.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标从前,有一个狡猾的庄园主,把一块边长为x米的正方形土地租给张老汉种植,第二年,他对张老汉说:“我把这块地的一边增加5米,另一边减少5米,继续租给你,租金不变,你也没有吃亏,你看如何?”张老汉一听觉得好像没有吃亏,就答应了,回到家中,把这事和邻居们一讲,都说:“张老汉,你吃亏了!”张老汉非常吃惊.同学们,你知道张老汉为什么吃亏吗?通过本节课的学习,你将能解释这其中的原因!二、自主学习,指向目标自学教材第107页至108页,思考下列问题:1.根据条件列式:(1)a、b两数的平方差可以表示为________;(2) a、b两数差的平方可以表示为________;2.平方差公式的推导依据是________________________________________________________________________.3.平方差公式(乘法)的特征是:左边是__________________,右边是__________________.三、合作探究,达成目标探究点一探索平方差公式活动一:1.填写教材P107三个计算结果,展示点评:(1)二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(二项)(2)观察上列算式的左边的两个二项式,有什么异同?运算出结果后的二项式与等式左边的二项式有什么关系?(等号的左边是两数的和乘以这两数的差,等号的右边是这两数的平方差.)2.归纳:两个数的________与这两个数的差的积,等于这两数的________.用公式表示上述规律为:(a+b)(a-b) =________这就是平方差公式.3.观察教材图14.2-1,请你用两种方法计算图形中阴影部分的面积,得到什么结果?(a+b)(a-b)=a2-b24.观察教材P108例1中的两个算式,能否用平方差公式进行计算?若能用,公式中a,b分别代表什么?例1运用平方差公式计算(1)(3x+2)(3x-2);(2)(-x+2y)(-x-2y).思考:确定能否应用平方差公式进行运算的关键是什么?展示点评:观察算式:①是不是两个二项式相乘;②是不是两数的和乘以两数的差;③若作为因式的二项式的首项是负号的,可以连同符号一起看作为一项,也可以把一个因式里的两项颠倒位置观察思考.关键就是确定是不是两数的和乘以两数的差.解答过程见课本P108例1小组讨论:能运用平方差公式计算的式子有何特征?【反思小结】能运用平方差公式进行计算的式子特征:①二项式与二项式的积;②把两个二项式进行对比:有一项相同,另一项互为相反数.针对训练:1.计算(2a+5)(2a-5)等于( A )A.4a2-25 B.4a2-5 C.2a2-25 D.2a2-52.计算(1-m)(-m-1),结果正确的是( B )A.m2-2m-1 B.m2-1 C.1-m2 D.m2-2m+1探究点二平方差公式的综合应用活动二:计算:(1)102×98;(2)(y+2)(y-2)-(y-1)(y+5).展示点评:(1)例1是数的计算,观察其特征,把两个因数如何变形能够运用平方差公式进行计算?(2)例2中有整式的简单的混合运算,在进行运算时要注意什么?展示点评:第1题可以变为100与2的和乘以100与2的差;第(2)题中多项式的乘法,能运用平方差公式的一定要运用平方差公式进行运算.解答过程见课本P108例2小组讨论:平方差公式与整式乘法有什么关系?在运用时应注意什么问题?【反思小结】(1)可运用平方差公式运算的式子,也属于我们前面所学的多项式乘以多项式的运算,所以说平方差公式适用于特殊形式的该类运算.(2)有些不能直接用平方差公式的题目可向公式形式转化,写成两数和与两数差乘积的形式,再运用公式.(3)在运用平方差公式运算时,一要注意确定好公式中的“a”项,“b”项;二要注意对两个数整体平方,而不是部分平方.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.平方差公式的特征,公式中的字母a和b既可以表示数,也可表示字母,还可以表示多项式;2.能应用平方差公式进行乘法运算,并能进行简单变形应用.3.平方差公式与多项式乘法之间的关系.五、达标检测,反思目标1.下列多项式乘法,能用平方差公式进行计算的是( C )A.(x+y)(-x-y) B.(2x+3y)(2x-3z)C.(-a-b)(a-b) D.(m-n)(n-m)2.下列各式运算结果是x2-25y2的是( B )A.(x+5y)(-x+5y) B.(-x-5y)(-x+5y)C.(x-y)(x+25y) D.(x-5y)(5y-x)3.两个连续奇数的平方差是( B )A.6的倍数B.8的倍数C.12的倍数D.16的倍数4.计算:(2+3x)(-2+3x)=__9x2-4__.5.已知(x-ay)(x+ay)=x2-16y2,那么a=__±4__.6.计算:(1)a(a-5)-(a+6)(a-6)解:原式=a2-5a-(a2-36)=36-5a(2)(x+y)(x-y)(x2+y2)解:原式=(x2-y2)(x2+y2)=x4-y4(3)9982-4解:原式=(998+2)(998-2)=1000×996=996000●布置作业,巩固目标教学难点1.上交作业:课本P112第1题.2.课后作业:见《学生用书》.第2课时完全平方公式教学目标1.理解完全平方公式,掌握两个公式的结构特征.2.熟练应用公式进行计算.教学重点完全平方公式的推导过程、结构特点以及几何解释,并能灵活应用.教学难点理解完全平方方式的结构特征,并能灵活应用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.多项式乘以多项式的法则是什么?(多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)2.观察下列计算过程及结果:(1)(p+q)(p+q)=________________=________________;(2)(x-y)(x-y)=________________=________________.展示点评:怎样快速的计算形如(2x+y)2的运算,这就是我们今天所要学习的主要内容.二、自主学习,指向目标自学教材第109页至110页,思考下列问题:1.完全平方公式的推导的依据多项式乘以多项式的乘法法则2.完全平方公式的特征是:左边是两数和(或差)的平方,右边是这两数的平方和,加上(或减去)这两数积的2倍;与平方差公式的区别是平方差公式是两数的和乘以两数的差,等于这两数的平方差,其结果是一个二项式.3.从几何的角度去理解完全平方公式,观察下图,可以得到:(1)(a+b)2=________;(2)(a-b)2=________.三、合作探究,达成目标探究点一 完全平方公式活动一:1.根据条件列式:(1)a ,b 两数和的平方可以表示为________;(2)a ,b 两数平方的和可以表示为________.2.填写教材P 109四个计算结果.展示点评:(1)一个多项式的平方运算可以看做哪种形式的运算(两个相同的多项式的乘法运算)(2)课本中的二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(三项)(3)上列算式运算的依据是什么? (依据是多项式乘以多项式的乘法法则)(4)观察上列算式,运算出结果后的三项式与等式左边的二项式有什么关系?(等号的左边是两数的和或差的平方;等号的右边是这两数的平方和,加上或减去这两数积的2倍.)3.归纳:由上述规律可得到公式:(a +b)2=________;(a -b)2=________.完全平方公式:两数和(或差)的平方等于这两个数的______加上(或减去)这两个数积的______倍.可记作:首平方,尾平方,二倍乘积放中央.4.观察教材图14 .2-2及14 .2-3你通过图形中的面积,得到什么结果?(a +b)2=a 2+ab +b 2+ab =a 2+2ab +b 2;(a -b)2=a 2-ab -ab +b 2=a 2-2ab +b 2;5.观察教材P 110例3中的两个算式,能否用完全平方公式进行计算?若能用,公式中a ,b 分别代表什么?例1 运用完全平方公式计算:(1)(4m +n)2 (2)⎝ ⎛⎭⎪⎫y -122(3)(-2a -3b)2 展示点评:从平方的意义看,⎝ ⎛⎭⎪⎫y -122与⎝ ⎛⎭⎪⎫12-y 2的结果一样吗?(-2a -3b)2与(-3b -2a)2的结果相同吗?而(4m +n)2与(4m -n)2的结果呢?展示点评:互为相反数的平方结果相等,因此(y -12)2与(12-y)2的结果一样;而4m +n 与4m -n 不一定相等或是相反数,因此其平方的结果不一定相等.小组讨论:应用完全平方公式计算应注意什么?解答过程见课本P 110例3反思小结:1.应用公式时,可以先确定两数的平方和,再加上(或减去)两数积的2倍;切记不要漏掉两数积的2倍;2.互为相反数的两个多项式的平方相等.针对训练:见《学生用书》相应部分探究点二 完全平方公式的综合应用活动二:运用完全平方公式计算:(1)1022 (2)992小组讨论:一个较大或较小数的平方运算,如何巧妙地进行变形,应用完全平方公式,快速的进行计算呢?展示点评:把102或99写成两数和或差的形式,再进行计算.反思小结:对于较大数的平方可以转化成两整数和(或差)的平方,再运用完全平方公式进行计算比较简便.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.完全平方公式的推导及其几何意义;2.完全平方公式里的字母可以表示一个数,表示一个单项式,也可以表示一个多项式;3.应用完全平方公式进行计算,有关数字计算题应用完全平方公式可以使计算简便.4.数学思想:类比、数形结合.五、达标检测,反思目标1.( x +3y )2=x 2+6xy +__9y 2__.2.a 2-kab +9b 2是完全平方式,则k =__±6__.3.计算(-a -b)2结果是( B )A .a 2-2ab +b 2B .a 2+2ab +b 2C .a 2+b 2D .a 2-b 24.运用乘法公式计算(1)⎝ ⎛⎭⎪⎫12x -12; (2)1052; 解:(1)原式=14x 2-x +1 (2)原式=(100+5)2=1002+2×100×5+25=10000+1025=11025 (3)(a -b -3)(a -b +3).解:原式=[(a -b )-3][(a -3)+3]=(a -b )2-9=a 2-2ab +b 2-95.已知x +y =9,xy =20,求(x -y)2的值.解:(x -y )2=(x +y )2-4xy =81-80=1●布置作业,巩固目标教学难点1.上交作业:课本第112页2、3(2)(3)、7.2.课后作业:见《学生用书》.第3课时 乘法公式的拓展教学目标1.了解添括号法则.2.能应用添括号法则,结合乘法公式,对项数是三项或三项以上的多项式乘法进行运算.教学重点应用添括号法则及乘法公式进行运算.教学难点正确的添加括号后,应用公式进行计算.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标1.去括号法则是什么?(如果括号前面是正号,去掉括号后,括号里的各项不变号;如果括号前面是负号,去掉括号后,括号里的各项都要变号.)2.我们学过的乘法公式有哪些,你能完整的叙述出来吗?(平方差公式,完全平方公式)3.对于形如(x+2y-3)(x-2y+3)的乘法可以怎样运算呢?你能运用比较简便的方法运算吗?这就是我们这节课主要学习的内容.二、自主学习,指向目标1.添括号的法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.它和去括号的联系是互逆变形.2.试一试,在括号内添加适当的项:(1) (x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)](2)x-2y-4x=x-2(y+2x)三、合作探究,达成目标探究点一添括号法则活动一:去括号:a+(b+c)=________;a-(b-c)=________反过来,你能给下列多项式添括号吗:a+b+c=a+(b+c) a-b-c=a-(b+c)展示点评:添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.小组讨论:添括号法则与去括号法则有什么关系?反思小结:添括号法则与去括号法则是互逆变形的过程,其符号变化与去括号法则变化一样.针对训练:见《学生用书》相应部分探究点二乘法公式的推广活动二:平方差公式:(a+b)(a-b)=________完全平方公式:(a±b)2=________公式中的a 和b是一个字母,可以是一个多项式吗?如果a或b是一个多项式,如何运算?(a和b可以代替一个多项式,计算时可以看作一个整体先按照乘法公式进行计算,然后再根据相应的法则,再进行运算.)例1运用乘法公式计算:(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2思考:第(1)题首先要应用添括号法则进行变形,需要应用几次公式,应用的公式相同吗?第(2)题与第(1)题的形式、运算过程和方法有何区别?展示点评:第1小题中先应用添括号法则把两个因式内互为相反数的两项结合变成两数的和乘以两数差的形式,先进行运算,再运用完全平方公式乘开,能合并同类项的一定要合并同类项;第2小题中应用加法交换与结合律,任意结合其中两项,应用两次完全平方公式即可.解答过程见课本P 111例5小组讨论:第(1)(2)题在添括号时,有什么相同点和不同点?【反思小结】两个多项式相乘,若两个多项式中既有相同的项,又有互为相反数的项,且没有其它的项,则要运用添括号法则把相同的项或互为相反数的项,分别括起来,把添到括号内的多项式当做一个整体,再进行计算.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.添括号法则;2.乘法公式里的字母可以表示一个数,表示一个单项式,也可以表示一个多项式;因此对于项数是三项或三项以上的多项式乘法,根据乘法的形式,添加适当的括号,再运用乘法公式运算.五、达标检测,反思目标1. 判断下列变形是否正确.(1)2a -b -c 2=2a -(b -c 2) (2)m -3n +2a -b =m +(3n +2a -b)(3)2x -3y +2=-(2x +3y -2)(4)a -2b -4c +5=(a -4c)-(2b -5)解:(1)(2)(3)都错误,(4)正确2.下列式子:①(3x +1)(3x -1)=(3x -1)2;②(x -3y)2=x 2-3xy +9y 2;③(1-2xy 2)2=1-4x 2y 4;④(a +1a )2=a 2+2+1a 2;其中正确的是( D ) A .① B .①② C .①②③ D .④3.如果x +y =-7,xy =12, 那么x 2-xy +y 2的值为( C )A .61B .37C .13D .114.运用乘法公式计算(1)(a -b -3)(a -b +3) (2)(a +2b -1)2解:(1)原式=[(a -b )-3][(a -b )+3]=(a -b )2-9=a 2-2ab +b 2-9 解:原式=[(a +2b )-1]2=(a +2b )2-2(a +2b )+1=a 2+4ab +4b 2-2a -4b +15.求证:无论x ,y 为何值时,多项式x 2+y 2-2x +6y +10的值恒大于负数.解: x 2+y 2-2x +6y +10=x 2-2x +1+y 2+6y +9=(x -1)2+(y +3)2∵(x -1)2≥0, (y +3)2≥0∴x 2+y 2-2x +6y +10≥0即无论x ,y 为何值时,多项式x 2+y 2-2x +6y +10的值恒为非负数.●布置作业,巩固目标教学难点1.上交作业:课本第112页 3(1)(4)、92.课后作业: 见《学生用书》。