4.解下列方程:
( ) ( ) (1)5 x2 - x = 3 x2 + x ;
x1 = 0, x2 = 4;
(3)( x - 2) ( x - 3) =12;
x1 = - 1, x2 = 6; (5)2 y2 +4 y = y +2.
x1
=
-
2,
x2
=
1; 2
(2)( x - 2) 2 =( 2x +3) 2 ;
你知道小亮这一步的依据吗? 如果agb = 0.
那么a = 0,或b = 0. a=0或b=0包含了哪些情况?
(1)a = 0,b ? 0; (2)a ? 0,b 0; (3)a = 0,b = 0.
a=0且b=0呢?
二、探究新知
因式分解法
由方程x2 = 3x,得:
x2 - 3x = 0.
即x( x - 3) = 0.
x - 3 = 0,或x +2 = 0. x1 = 3, x2 = - 2.
四、随堂练习
(3)( 2x +3) 2 = 4( 2x +3) ;
解:原方程可变形为:
( 2x +3) 2 - 4( 2x +3) = 0. ( 2x +3) ( 2x - 1) = 0.
2x +3 = 0,或2x - 1 = 0.
31
x1
=-
2 , x2
=
. 2
(4)2( x - 3) 2 = x2 - 9.
解:原方程可变形为:
2( x - 3) 2 - ( x +3) ( x - 3) = 0. ( x - 3) ( x - 9) = 0.
x - 3 = 0,或x - 9 = 0. x1 = 3, x2 = 9.