人教版九年级数学上册单课件-3公式法.ppt
- 格式:ppt
- 大小:679.00 KB
- 文档页数:19
人教版九年级上册数学课件一、一元二次方程。
1. 定义与一般形式。
- 定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程。
- 一般形式:ax^2+bx + c = 0(a≠0),其中a是二次项系数,b是一次项系数,c 是常数项。
- 举例:x^2+3x - 4 = 0,这里a = 1,b = 3,c=-4。
2. 解法。
- 直接开平方法。
- 对于方程x^2=k(k≥0),解得x=±√(k)。
- 例如,对于方程(x - 2)^2=9,则x - 2=±3,解得x = 5或x=-1。
- 配方法。
- 步骤:先将方程化为x^2+bx = - c的形式,然后在等式两边加上((b)/(2))^2,将左边配成完全平方式(x+(b)/(2))^2,再进行求解。
- 例如,解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x+9 = 7 + 9,即(x + 3)^2=16,解得x = 1或x=-7。
- 公式法。
- 一元二次方程ax^2+bx + c = 0(a≠0)的求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
- 例如,解方程2x^2-5x+3 = 0,这里a = 2,b=-5,c = 3,代入公式得x=frac{5±√((-5)^2)-4×2×3}{2×2}=(5±1)/(4),解得x = 1或x=(3)/(2)。
- 因式分解法。
- 把方程化为(mx + n)(px+q)=0的形式,那么mx + n = 0或px+q = 0。
- 例如,解方程x^2-3x+2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2。
3. 根的判别式Δ=b^2-4ac- 当Δ>0时,方程有两个不相等的实数根。
- 当Δ = 0时,方程有两个相等的实数根。
- 当Δ<0时,方程没有实数根。