x (-2 3)
0 2
3
3.
21
2
即 : x1 x2 3.
b b2 4ac x
2a
例3 解方程: x2 x 1 0 (精确到0.001). 解: a 1,b 1, c 1,
b2 4ac 12 41 (1) 5 0
x 1 5 2
用计算器求得: 5 2.2361
1.化为一般式,确定a,b,c的值.
2.计算 的值,确定 的符号.
3.判别根的情况,得出结论.
例5:已知一元二次方程x2+x=1,下列判断正确的是( B )
A.该方程有两个相等的实数根 B.该方程有两个不相等的实数根 C.该方程无实数根 D.该方程根的情况不确定
解析:原方程变形为x2+x-1=0.∵b2-4ac=1-4×1×(-1)=5
导入新课
问题:老师写了4个一元二次方程让同学们判断它们是否有解, 大家都才解第一个方程呢,小红突然站起来说出每个方程解 的情况,你想知道她是如何判断的吗?
讲授新课
合作探究
求根公式的推导
任何一个一元二次方程都可以写成一般情势
ax2+bx+c=0
能否也用配方法得出它的解呢?
用配方法解一般情势的一元二次方程
例6:若关于x的一元二次方程kx2-2x-1=0有两个不相等的
实数根,则k的取值范围是( B )
A.k>-1
B.k>-1且k≠0
C.k<1
D.k<1且k≠0
解析:由根的判别式知,方程有两个不相等的实数根,
则b2-4ac>0,同时要求二次项系数不为0, 即 (2)2 4k 0 ,k≠0.解得k>-1且k≠0,故选B.