边界元法与无网格法-无网格法
- 格式:ppt
- 大小:5.52 MB
- 文档页数:48
多物理场模拟仿真第一部分多物理场概述 (2)第二部分仿真模拟技术发展 (3)第三部分数值求解方法介绍 (6)第四部分计算流体力学应用 (8)第五部分热传导与温度调控 (11)第六部分电磁场模拟与优化 (13)第七部分光学现象与仿真应用 (15)第八部分多物理场耦合问题研究 (17)第一部分多物理场概述括对流、热传导、电磁学、力学等多个物理学科的交叉,要求研究人员具备丰富的知识和技能。
在过去的几十年中,随着计算机技术的飞速发展和数值方法的不断创新,多物理场模拟仿真技术得到了广泛应用。
例如,在航空航天领域,需要模拟气动弹性、传热、结构强度等多种物理现象。
在能源方面,需要模拟温度、压力、化学反应等物理参数,以提高能源转换效率和减少污染排放。
此外,在生物医学、环境科学等领域也都需要进行多物理场模拟仿真来提高研究水平。
然而,多物理场模拟仿真的实现并不容易。
它涉及到多种不同的物理现象,需要精确描述每个物理场的相关方程,还需要处理不同时间尺度、空间尺度和物理单元之间的复杂相互作用。
因此,多物理场模拟仿真需要强大的计算能力和先进的算法支持。
为了解决这些问题,研究人员开发了各种多物理场模拟仿真方法。
其中最常用的方法是有限元法,该方法通过将连续体离散化为网格节点,并利用插值函数将物理量从节点扩展到整个区域,从而求解偏微分方程。
此外,还有有限差分法、边界元法、谱元法等多种方法可供选择。
尽管已经取得了一些进展,但多物理场模拟仿真仍然是一个充满挑战的领域。
随着物理问题的复杂性和计算能力的不断提高,新的方法和算法仍需不断研发,以满足日益增长的需求。
第二部分仿真模拟技术发展仿真模拟技术是一种通过计算机模拟真实世界中的物理现象和过程的技术,在科研、工程设计和教学等领域具有广泛的应用。
随着计算能力的提高和数值方法的发展,仿真模拟技术不断进步,为人类社会的发展做出了巨大的贡献。
早在 20 世纪 40 年代,仿真模拟技术就已经开始萌芽。
断裂力学概述关键词:断裂力学;现状;阶段性问题;发展趋势中文摘要:本文主要介绍了断裂力学的4个方面,包括对断裂力学的简单介绍,相关的理论和方法,现阶段存在的问题及技术关键,发展趋势。
英文摘要:Four aspects of fracture mechanics are referred in this paper, including brief introduction about fracture mechanics, related theories and methods, problems and key technologies existing at the present stage, and the development.1.引言断裂力学是近几十年才发展起来了的一门新兴学科,主要研究承载体由于含有一条主裂纹发生扩展(包括静载及疲劳载荷下的扩展)而产生失效的条件。
断裂力学应用于各种复杂结构的分析,并从裂纹起裂、扩展到失稳过程都在其分析范围内。
由于它与材料或结构的安全问题直接相关,因此它虽然起步晚,但实验与理论均发展迅速,并在工程上得到了广泛应用。
断裂力学研究的方法是:从弹性力学方程或弹塑性力学方程出发,把裂纹作为一种边界条件,考察裂纹顶端的应力场、应变场和位移场,设法建立这些场与控制断裂的物理参量的关系和裂纹尖端附近的局部断裂条件。
2.国内外相关研究现状目前,断裂力学总的研究趋势是:从线弹性到弹塑性;从静态断裂到动态断裂;从宏观微观分离到宏观与微观结合;从确定性方法到概率统计性方法。
所以就断裂力学本身而言,根据研究的具体内容和范围,它又被分为宏观断裂力学(工程断裂力学)和微观断裂力学(属金属物理范畴)。
宏观断裂力学又可分为弹性断裂力学(它包括线性弹性断裂力学和非线性弹性断裂力学)和弹塑性断裂力学(包括小范围屈服断裂力学和大范围屈服断裂力学及全面屈服断裂力学)。
工程断裂力学还包括疲劳断裂、蠕变断裂、腐蚀断裂、腐蚀疲劳断裂及蠕变疲劳断裂等工程中重要方面。
科技信息0.前言混凝土是典型的非均匀材料,其内部有宏观的缺陷如裂纹、夹渣、气泡、孔穴等。
混凝土的强度、变形和破坏性能等都与其内部结构及裂缝的扩展有关。
混凝土破坏是由于体系中潜在的各种缺陷引起的,其破坏过程实际上就是微裂纹萌生、扩展、贯通,直到宏观裂纹产生导致混凝土失稳破裂的过程[1]。
研究混凝土材料的断裂过程及其宏观力学性能有利于认识混凝土断裂破坏机理,为混凝土结构体系的数值仿真分析提供力学依据。
国内外学者提出了很多研究混凝土断裂破坏的数值方法,包括流形元法[2]、边界元法[3]、分形几何法[4]、无网格法[5]、有限元法[6]等等。
这些非连续介质数值计算方法由于其各自的缺陷,如网格重划分问题,计算效率问题等因素限制了其发展。
1999年,美国西北大学以Belytschko 教授为代表的研究组提出了一种在常规有限元框架内求解不连续问题的扩展有限元法,该方法在短短的十年内得到广泛的应用。
Ted Belytschko 等[7]采用XFEM 和水平集模拟了弹塑性介质中的动态裂纹扩展问题,数值模拟和试验结果一致。
Moes 等[8]利用XFEM 进行细观结构的多尺度分析,他们认为,虽然计算中网格不需要与物理表面一致,但仍需要细到足以捕捉这些表面的几何特征。
张晓东[9]用扩展有限元法结合虚拟裂缝模型对单向拉伸混凝土板和三点弯曲混凝土梁进行开裂过程模拟,重点考察初始裂纹长度、混凝土断裂对混凝土板和梁开裂特性的影响。
应宗权[10]等为了简化颗粒增强复合材料的单元划分问题,利用水平集函数来表征夹杂材料的几何界面,从而使得有限元网格的划分无需与材料细观结构的内部边界相协调。
本文首先介绍扩展有限元法的基本原理,给出了扩展有限元进行混凝土开裂及裂纹扩展的分析方法,最后采用扩展有限元模拟了混凝土单轴拉伸的细观断裂破坏过程,展示扩展有限元在混凝土断裂问题研究中的独特优势。
1.扩展有限元基本原理扩展有限元(XFEM )是基于单位分解的思想在常规有限元位移模式中加进一些特殊的函数,即跳跃函数和裂尖渐近位移场,从而反映裂纹的存在。
第24卷第4期(总第109期)机械管理开发2009年8月Vol.24No.4(SUM No.109)MECHANICAL MANAGEMENT AND DEVELOPMENT Aug.20090引言有限元法(FEA)是随着电子计算机的发展而迅速发展起来的一种现代计算方法,但FEA是基于网格的数值方法,在分析涉及特大变形(如加工成型、高速碰撞、流固耦合)、奇异性或裂纹动态扩展等问题时遇到了许多困难。
同时,复杂的三维结构的网格生成和重分也是相当困难和费时的。
近年来,无网格得到了迅速的发展,受到了国际力学界的高度重视。
与有限元的显著特点是无网格法不需要划分网格,只需要具体的节点信息,采用一种权函数(或核函数)有关的近似,用权函数表征节点信息。
克服了有限元对网格的依赖性,在涉及网格畸变、网格移动等问题中显示出明显的优势。
1无网格方法的概述无网格方法(Meshless Method)是为有效解决有限元法在数值模拟分析时网格带来的重大问题而产生的,其基本思想是将有限元法中的网格结构去除,完全用一系列的节点排列来代之,摆脱了网格的初始化和网格重构对问题的束缚,保证了求解的精度[1]。
是一种很有发展的数值模拟分析方法。
目前发展的无网格方法有:光滑质点流体动力学法(SPH)、无网格枷辽金法(EFGM)、无网格局部枷辽金法(MLPGM)、扩散单元法(DEM)、Hp-clouds无网格方法;有限点法(FPM)、无网格局部Petrov-Galerkin 方法(MLPG)、多尺度重构核粒子方法(MRKP)、小波粒子方法(WPM)、径向基函数法(RBF)、无网格有限元法(MPFEM)、边界积分方程的无网格方法等。
这些方法的基本思想都是在问题域内布置一系列的离散节点,然后采用一种与权函数或核函数有关的近似,使得某个域上的节点可以影响研究对象上的任何一点的力学特性,进而求得问题的解。
2无网格方法国内外研究的进展无网格法起源于20世纪70年代。
油藏数值模型现状与开展趋势吴晰一、前言随着计算机工程、数学模型和油藏工程等学科的不断开展以与融合,油藏数值模拟技术得到不断的开展和广泛的应用并日趋成熟完善。
通过油藏数值模拟可以掌握油藏的整体规律;研究合理的开发方案,选择最优的开采参数,以最少的投资、最科学的开采方式而获得最高采收率与最大的经济效益。
试井分析方法随着测试手段的提高,经历了常规试井分析方法和现代试井分析方法的开展和完善,成为油藏精细描述和油藏开发动态调整的重要工具。
二、油藏数值模拟技术现状与开展趋势2.1 渗流模型综述渗流模型有以下几种分类:A.按渗流性质分为黑油模型、组分模型、混相驱模型、热采模型与化学驱模型等B.按油藏类型分为砂岩油藏模型、裂缝性油藏模型、气藏模型、凝析气藏模型与复杂断块模型等IMPES方法、半隐式、交替隐式、全隐式与自适应隐式等D.按线性方程组得解法分为各种节点排序方法、各种直接法与各种迭代法等,并可对井、区块或油田给定各种边界条件。
总结各种模型的共同点就是先进展微元体分析用积分或微分方法导出系统的质量守恒方程,然后将运动方程和状态方程代入,在此根底上,根据实际问题的需要进展各种必要的简化和处理。
2.2 数值求解方法从大的方面而言,离散求解方法主要有四类:有限差分法、有限元法、边界元法与有限体积法。
他们各有优缺点,有限差分法最为成熟,占主导地位,但是在处理网格方向、复杂边界与稳定性方面有局限性。
有限元法可克制这些问题,但是它不太适用于点源和点汇问题。
边界元法是最新兴起的一种解法,它的优点是使问题的维数降低一维,从而使数据准备工作量大为减少,但是求解复杂的边界积分方程与方程推导比拟复杂。
2004年X青山、段永刚等用边界元法处理复杂油藏边界与分析油藏不稳定渗流问题。
在网格离散后形成大型的代数方程组得解法上主要有直接法,迭代法和预处理共轭梯度法。
可根据求解的问题和方程的特点加以选择。
油藏数值模拟技术的开展趋势如今油藏数值模拟在软件与模型的技术上已经很成熟了。
流体仿真知识点总结流体仿真是指利用计算机模拟流体力学问题,通过数值方法研究流体的运动规律和流场性质。
它是一种重要的科学计算手段,广泛应用于航空航天、水利工程、环境工程、汽车工程、海洋工程等领域。
本文将对流体仿真的基本概念、数值方法、常见模型以及实际应用进行总结,以帮助读者全面了解流体仿真的知识体系。
一、基本概念1. 流体的基本性质流体是一种特殊的物质状态,具有不固定的形状和容易流动的特性。
其主要物理性质包括密度、压力、温度、速度、粘度等。
在流体力学中,通常将流体分为不可压缩流体和可压缩流体两种类型,分别对应于马赫数小于0.3和大于0.3的情况。
2. 流体力学基本方程流体力学基本方程包括连续方程、动量方程和能量方程。
其中连续方程描述了流体的质量守恒,动量方程描述了流体的动量守恒,能量方程描述了流体的能量守恒。
这些方程是描述流体运动规律的基础,也是流体仿真的数学模型基础。
3. 边界条件和初值条件流体力学问题的边界条件和初值条件对解的精度和稳定性有着重要影响。
边界条件指流场与固体边界的交界处的物理条件,通常包括速度、压力、温度等。
初值条件指初始时刻各物理量的数值分布。
确定合适的边界条件和初值条件是流体仿真的关键步骤之一。
二、数值方法1. 有限差分法有限差分法是一种基本的离散数值方法,它将求解区域分割成有限个离散点,通过差分逼近连续微分方程,将微分方程转化为代数方程组进而进行数值求解。
有限差分法在流体力学中得到了广泛应用,如Navier-Stokes方程、能量方程和扩散方程等都可以通过有限差分法进行离散求解。
2. 有限体积法有限体积法是将求解区域分割成有限个控制体,通过对控制体内部进行积分得到平均值,进而将微分方程转化为代数方程组。
有限体积法在流体力学中得到了广泛应用,特别适用于非结构网格和复杂流场的数值模拟。
3. 有限元法有限元法是一种通过拟合局部基函数的方法,将微分方程转化为代数方程组进而进行数值求解。
首先,从五个方面进行有限元和无网格方法比较,分别是网格划分、形函数的产生、边界条件、系统离散方案、系统方程的求解:1、网格划分有限元方法:连续体被划分成由有限个称作单元的小网格组合而成的离散结构。
单元划分是前处理过程中非常重要的部分, 通常占整个分析过程中大部分时间。
由于单元能按不同的联结方式进行组合,且单元本身又可以有不同的形状,因此可以模拟几何形状复杂的求解域。
无网格方法:问题域由一系列任意分布的节点来代替, 不需要用单元或网格来进行场变量插值, 也无须描述节点之间的关系。
节点的生成可完全由计算机自动完成, 这大大节省了分析人员的时间, 也相对较容易在分析过程中对节点进行重新划分。
几何体边界是由节点替代(而非离散) , 如图1所示,两个节点之间的任意一点可由近似函数插值。
(a)有限元法中光滑曲线边界由三角形直线边代替(b)无网格法中光滑边界由节点替代图1 网格-节点示意图2、形函数的产生:有限元法和无网格法都可从哈密尔顿原理推出, 它们之间最关键的区别是形函数的构造。
有限元法:形函数是定义于单元的局部近似函数,因此函数的连续性、光滑性在网格的分界处必然受到限制,计算后还需要进一步的后处理。
形函数可以直接插值得到,故相对较容易构造且相同类型的单元具有相同的形函数。
无网格方法:形函数是围绕每一个节点建立插值函数构成的,不同的点具有不同的形函数,形函数定义于全域,具有较好的连续性和光滑性,不需要后处理过程。
3、边界条件有限元法:施加边界条件并不很困难, 通常在网格划分时使网格形式满足边界条件特点, 本质边界条件可直接加在节点上。
无网格方法:本质边界条件不仅依赖边界点,而且也与内部点有关,无网格法不能直接施加本质边界条件都是用离散的点来代替连续的边界值,这样会给本质边界条件的精确实现造成困难。
,拉格朗日乘子法和罚函数法是两种基本的方法。
4、系统离散方案有限元法是建立在虚功原理上的。
若给出控制微分方程,对于固体结构或流体, 都可以从加权残值法推出更普遍意义上的有限元公式,其可以得到一个对称的刚度矩阵。
无网格法的理论及其应用张雄清华大学航天航空学院无网格法,清华大学出版社/有限元法存在的某些困难无网格法是直接利用分布在求解域中的离有限元法存在的某些困难七十年代:非规则网格有限差分法(Nayroles等)Liu等、RKPM)Onate等,FPM)年:单位分解有限元法和广义有限元将无网格法的思想引入有限元法中紧支径向基函数配点法Computer Methods in Engineering有限元法存在的某些困难紧支试函数只定义在局部域中有限元法存在的某些困难(Kernel approximation)用积分核变换近似在边界附近不满足对非均匀布点不能满足含伸缩系数的紧支核函数有限元单位分解近似单位分解条件()1x IIφ=∑()x I φ—定义在子域上ΩI 的非零函数1()()(())x x x m h kII iI i I i u u b q φ==⋅+⋅∑∑(x )I I u u =iI b —待定系数()x i q —基函数hp云团法点插值法m∑ uh (x) = Pi (x) ⋅ ai (x) = P(x)a(x) i =1与MLS类似,但取n = m 是一种插值 系数矩阵的奇异性问题基于径向基函数的点插值法Nm∑ ∑ g(x) = ck ⋅φ( x − xk ) + bi pi (x)k =1i =12005年8月30日无网格法的理论及其应用张雄无网格法的理论及其应用 有限元法存在的某些困难 无网格法的研究历史 紧支试函数加权残量法¾紧支试函数 ¾加权残量法 无网格法总结 无网格法的应用2005年8月30日无网格法的理论及其应用张雄加权残量法 控制方程 A(u(x)) = 0 In Ω B(u(x)) = 0 On Γ∫ ∫ WA(uh (x)) d Ω + WB(uh (x)) d Γ = 0 Γ Ω2005年8月30日无网格法的理论及其应用张雄加权残量法 Galerkin Collocation Local Petrov Galerkin Least Square Collocation Weighted Least Square Galerkin Least Square Galerkin Collocation2005年8月30日无网格法的理论及其应用张雄Collocation 微分方程在域内节点处满足,边界条件在 边界节点处满足A(uh (xI )) = 0 ∀xI ∈ Ω B(uh (xI )) = 0 ∀xI ∈ Γ¾ 计算效率高,方法简单 ¾ 精度差,稳定性差 ¾ 系数矩阵不对称2005年8月30日无网格法的理论及其应用张雄Galerkin 在域内取W = φJ,在边界上取 W = −φJ∫ ∫ ΩφJ [ A(uh (x))]dΩ − ΓφJ [B(uh (x))]dΓ = 0¾ 计算量大 ¾ 精度高,稳定性好 ¾ 系数矩阵对称2005年8月30日无网格法的理论及其应用张雄Galerkin 积分 ¾ 背景网格积分 ¾ 有限元网格积分 ¾ 节点积分(稳定化方案) ¾ 单位分解积分 本质边界条件的处理 ¾ 拉格朗日乘子法 ¾ 修正变分原理 ¾ 罚函数法 ¾ 位移约束方程法 ¾ 变换法2005年8月30日无网格法的理论及其应用张雄Local Petrov-Galerkin 残差在各个节点的子域中消除,且 W ≠ φJ∫ ∫ WA(uh (x))dΩ + WB(uh (x))dΓ = 0ΩIΓI¾ 不需要背景网格 ¾ 需使用特殊的积分方案 ¾ 系数矩阵不对称2005年8月30日无网格法的理论及其应用张雄Least square collocation 除节点外,在域内设置一些辅助点。