1.2.3复合函数的导数公式
- 格式:ppt
- 大小:1.44 MB
- 文档页数:15
1.2.3 导数的四则运算法则学习目标(1)能利用导数的运算法则和基本初等函数的导数公式求简单函数的导数;(2)理解并掌握复合函数的求导法则.知识导学一、导数的四则运算法则1.函数和(或差)的求导法则若f(x),g(x)是可导的,则(f(x)+g(x))′=f′(x)+g′(x),(f(x)-g(x))′=f′(x)-g′(x).注意:(1)设f(x),g(x)是可导的,则(f(x)±g(x))′=f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两个函数的导数的和(或差).(2)对任意有限个可导函数,有(f1(x)±f2(x)±…±f n(x))′=f1′(x)±f2′(x)±…±f n′(x).2.函数积的求导法则对于可导函数f(x),g(x),有[f(x)g(x)]′=f′(x)·g(x)+f(x)·g′(x).注意:(1)若C为常数,则[Cf(x)]′=C′f(x)+Cf′(x)=0+Cf′(x)=Cf′(x),即[Cf(x)]′=Cf′(x),即常数与函数之积的导数,等于常数乘函数的导数.(2)[af(x)+bg(x)]′=af′(x)+bg′(x),a,b为常数.切忌把[f(x)·g(x)]′记成f′(x)·g′(x).3.函数的商的求导法则对于可导函数f(x),g(x),有[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)g2(x)(g(x)≠0).注意:在两个函数积f(x)g(x)的导数公式中,f′(x)g(x)与g′(x)f(x)之间为“+”号;而两个函数商f(x)g(x)的导数公式中,f′(x)g(x)与f(x)g′(x)之间为“-”号.二、复合函数的求导法则1.复合函数的求导法则一般地,设函数u=φ(x)在点x处有导数u x′=φ′(x),函数y=f(u)在点x的对应点u处有导数y u′=f′(u),则复合函数y=f(φ(x))在点x处也有导数,且y x′=y u′·u x′或f′(φ(x))=f′(u) φ′(x)或d y d x=d y d u·d ud x,即复合函数对自变量的导数,等于已知函数对中间变量的导数乘中间变量对自变量的导数.2.求复合函数的导数的步骤(1)适当选定中间变量,正确分清复合关系;(2)分步求导;(3)把中间变量代回原自变量的函数.整个过程可简记为“分解——求导——回代”.熟练后,可省略中间过程.若遇多重复合,可相应的多次用中间变量.3.求复合函数的导数应处理好以下环节:①中间变量的选择应是基本函数结构;②关键是正确分析函数的复合层次;③一般是从最外层开始,由外及里,一层层地求导;④善于把一部分表达式作为一个整体;⑤最后要把中间变量换成自变量的函数.三、导数计算中的化简技巧有关导数的运算一般要按照导数的运算法则进行,但也不能盲目地套用公式,要仔细观察函数式的结构特点,适当地对函数式中的项进行“合”与“拆”,进行优化组合,有的放矢,但每部分易于求导,然后运用导数运算法则进行求解.在实施化简时,首先必须注意变换的等价性,避免运处算失误.探究点一 导数的四则运算例1 求下列函数的导数.(1)y =x 4-3x 2-5x +6;(2)y =(x +1)(x +2)(x +3);(3)y =x -1x +1; (4)y =2x +1x 2+x 22x +1.归纳总结(1)熟练掌握和运用函数的和、差、积、商的导数公式,并进行简单、合理的运算,注意运算中公式运用的准确性.(2)灵活运用公式,化繁为简,如小题(2)这种类型,展开化为和、差的导数比用积的导数简单容易.练一练1.求下列函数的导数:(1)y=x4-3x3+2x2-4x-1;(2)y=x cos x;(3)y=sin2x;(4)y=tan x+cot x;(5)y=x2ln x+1log a x(a>0且a≠1,x>0).探究点二复合函数的导数例2 求下列函数的导数.(1)y=sin3x;(2)y=3-x.方法总结复合函数的求导需注意以下问题:(1)分清复合函数的复合关系,看它是由哪些基本初等函数复合而成的,适当选定中间变量;(2)分步计算的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的导数.如(sin2x )′=2cos2x ,而(sin2x )′≠cos2x ;(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数;(4)复合函数的求导熟练后,中间步骤可省略不写.练一练2.求下列函数的导数:(1)y =cos ⎝⎛⎭⎫3x -π6; (2)y =ln(2x 2+3x +1).探究点三 求导法则的综合应用例3 求和S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N +).方法总结 本题事实上可用数列中的错位相减法求和解决,若利用导数转化,则可成为等比数列求和问题,从而简化运算.求解时要注意需对x 是否等于1分类讨论.练一练3.求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程.当堂检测1.求函数y =x 3·cos x 的导数.解:y ′=(x 3)′cos x +x 3·(cos x )′=3x 2cos x -x 3sin x .2.求y =x 2sin x的导数.3.求复合函数y =(2x +1)5的导数.4.函数f (x )=(x +1)(x 2-x +1)的导数为( )A .x 2-x +1B .(x +1)(2x -1)C .3x 2D .3x 2+15、已知函数f (x )=x (x -1)(x -2)·…·(x -2015),则f ′(0)=________.课堂小结导数的四则运算法则⎩⎪⎨⎪⎧ 函数和差积商的求导法则掌握复合函数的求导法则理解参考答案探究点一 导数的四则运算例1 解:(1)y ′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′+(6)′=4x 3-6x -5.(2)解法1:y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.解法2:∵y =x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.(3)解法1:y ′=⎝ ⎛⎭⎪⎫x -1x +1′=(x -1)′(x +1)-(x -1)(x +1)′(x +1)2 =(x +1)-(x -1)(x +1)2=2(x +1)2. 解法2:∵y =1-2x +1,∴y ′=⎝⎛⎭⎫1-2x +1′=⎝⎛⎭⎫-2x +1′ =-(2)′(x +1)-2(x +1)′(x +1)2=2(x +1)2. (4)y ′=⎝⎛⎭⎫2x +1x 2′+⎝⎛⎭⎫x 22x +1′=(2x +1)′x 2-(2x +1)(x 2)′x 4+(x 2)′(2x +1)-x 2(2x +1)′(2x +1)2=2x 2-4x 2-2x x 4+4x 2+2x -2x 2(2x +1)2=-2x -2x 3+2x 2+2x (2x +1)2. 练一练1.解:(1)y ′=4x 3-9x 2+4x -4.(2)y ′=x ′cos x +x (cos x )′=cos x -x sin x .(3)y ′=(sin2x )′=(2sin x cos x )′=(2sin x )′cos x +2sin x (cos x )′=2cos 2x -2sin 2x =2cos2x .(4)y ′=(tan x +cot x )′=⎝⎛⎭⎫sin x cos x ′+⎝⎛⎭⎫cos x sin x ′=cos 2x +sin 2x cos 2x +-sin 2x -cos 2x sin 2x =1cos 2x -1sin 2x=-cos2x cos 2x sin 2x =-4cos2x sin 22x . (5)y ′=2x ln x +x 2·1x +0-1x ln a log 2a x=2x ln x +x -ln a x ln 2x . 探究点二 复合函数的导数例2 解:(1)设y =sin u ,u =3x ,则y ′x =y ′u ·u ′x =cos u ·3=3cos3x .(2)设y =u ,u =3-x ,则y ′x =y ′u ·u ′x =12u ·(-1)=-123-x. 练一练 2.解:(1)设y =cos u ,u =3x -π6, ∴y ′x =-sin u ·3=-3sin ⎝⎛⎭⎫3x -π6. (2)设y =ln u ,u =2x 2+3x +1,∴y ′x =y ′u ·u ′x =1u ·(4x +3)=4x +32x 2+3x +1. 探究点三 求导法则的综合应用例3 解:当x =1时,S n =1+2+…+n =n (n +1)2; 当x ≠1时,∵x +x 2+x 3+…+x n =x (x n -1)x -1, ∴S n =1+2x +3x 2+…+nx n -1=(x +x 2+x 3+…+x n )′=(x n +1-x x -1)′ =(x n +1-x )′(x -1)-(x n +1-x )(x -1)′(x -1)2=1-(n +1)x n +nx n +1(x -1)2. 练一练3.解:设P (x 0,y 0)为切点,则切线斜率为k =y ′|x =x 0=3x 20-2.故切线方程为y -y 0=(3x 20-2)(x -x 0). ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0. ② 又∵(1,-1)在切线上,∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12. 故所求的切线方程为y +1=x -1或y +1=-54(x -1), 即x -y -2=0或5x +4y -1=0.当堂检测1.解:y ′=(x 3)′cos x +x 3·(cos x )′=3x 2cos x -x 3sin x .2.解:y ′=(x 2)′sin x -x 2·(sin x )′sin 2x=2x sin x -x 2cos x sin 2x. 3.解:∵函数y =(2x +1)5由函数y =u 5和u =2x +1复合而成, ∴y ′x =y ′u ·u ′x =(u 5)′u ·(2x +1)′x=5u 4·2=5(2x +1)4·2=10(2x +1)4,即y ′x =10(2x +1)4.4.【答案】 C【解析】 因为y =(x +1)(x 2-x +1)=x 3+1, 所以y ′=(x 3+1)′=3x 2,故选C.5.【答案】 -(1×2×3× (2015)【解析】 依题意,设g (x )=(x -1)(x -2)·…·(x -2015), 则f (x )=x ·g (x ),f ′(x )=[x ·g (x )]′=g (x )+x ·g ′(x ), 故f ′(0)=g (0)=-(1×2×3×…×2015).。
求导公式大全24个1.常数函数的导数为零:(c)'=0。
2.幂函数的导数:(x^n)'=n*x^(n-1)。
3.反比例函数的导数:(1/x)'=-1/x^2。
4. 指数函数的导数:(a^x)' = a^x*lna,其中lna为以e为底数的对数。
5. 对数函数的导数:(ln x)' = 1/x,其中x>0。
6. 正弦函数的导数:(sin x)' = cos x。
7. 余弦函数的导数:(cos x)' = -sin x。
8. 正切函数的导数:(tan x)' = sec^2 x = 1/cos^2 x。
9. 反正弦函数的导数:(arcsin x)' = 1/√(1-x^2)。
10. 反余弦函数的导数:(arccos x)' = -1/√(1-x^2)。
11. 反正切函数的导数:(arctan x)' = 1/(1+x^2)。
12. 双曲正弦函数的导数:(sinh x)' = cosh x。
13. 双曲余弦函数的导数:(cosh x)' = sinh x。
14. 双曲正切函数的导数:(tanh x)' = sech^2 x = 1/cosh^2 x。
15. 反双曲正弦函数的导数:(arcsinh x)' = 1/√(x^2+1)。
16. 反双曲余弦函数的导数:(arccosh x)' = 1/√(x^2-1)。
17. 反双曲正切函数的导数:(arctanh x)' = 1/(1-x^2)。
18.真分式的导数:(f(x)/g(x))'=(f'(x)g(x)-g'(x)f(x))/g^2(x)。
19.复合函数的导数:(f(g(x)))'=f'(g(x))*g'(x)。
20.积的导数:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
数学中求导的公式求导是微积分中的一个重要概念,用于描述一个函数在某一点的变化率。
在数学中,求导的公式是通过对函数进行微分来计算它的导数。
导数表示了函数在某一点的切线斜率,也可以用来求函数的最值、高阶导数等。
在求导的过程中,我们常用的求导公式有以下几个:1. 常数函数的导数公式:对于常数函数y = c,其中c为常数,其导数为0。
这是因为常数函数的图像是一条水平直线,斜率为0。
2. 幂函数的导数公式:对于幂函数y = x^n,其中n为常数,其导数为y' = n * x^(n-1)。
这个公式可以通过使用定义来推导,也可以使用幂函数的特殊性质来求导。
3. 指数函数的导数公式:对于指数函数y = a^x,其中a为常数且不等于1,其导数为y' = ln(a) * a^x。
指数函数的导数与函数自身成正比,且比例常数是ln(a)。
4. 对数函数的导数公式:对于对数函数y = log_a(x),其中a为常数且大于0且不等于1,其导数为y' = 1 / (x * ln(a))。
对数函数的导数可以通过换底公式和指数函数的导数公式推导得到。
5. 三角函数的导数公式:对于三角函数sin(x)、cos(x)、tan(x)等,它们的导数公式分别为cos(x)、-sin(x)、sec^2(x)等。
这些公式可以通过使用极限定义来推导。
6. 反三角函数的导数公式:对于反三角函数arcsin(x)、arccos(x)、arctan(x)等,它们的导数公式分别为 1 / sqrt(1 - x^2)、-1 / sqrt(1 - x^2)、1 / (1 + x^2)等。
这些公式可以通过使用反函数的导数与原函数导数互为倒数的性质来推导。
7. 复合函数的导数公式:对于复合函数y = f(g(x)),其中f和g 分别为函数,其导数可以通过链式法则来计算。
链式法则表示,复合函数的导数等于外层函数在内层函数的导数上乘以内层函数的导数。
复合函数导数知识点总结一、基本概念1. 复合函数的定义复合函数由两个函数组合而成,形式为h(x) = f(g(x)),其中f和g是两个函数,g的输出是f的输入。
例如,f(x) = x^2, g(x) = 2x,则h(x) = f(g(x)) = (2x)^2 = 4x^2。
2. 复合函数的导数复合函数的导数描述了函数随着自变量变化时的变化率。
在微分学中,复合函数的导数可以求解两种方法:链式法则和隐函数法则。
二、链式法则链式法则是求解复合函数导数的重要方法,它描述了复合函数导数与原函数导数之间的关系。
1. 链式法则的定义假设函数h(x) = f(g(x))是一个复合函数,其中f和g是可导函数,那么h的导数为h'(x) = f'(g(x)) * g'(x)。
这个公式表明,复合函数的导数等于外函数在内函数的值上的导数与内函数的导数的乘积。
2. 链式法则的应用链式法则最经典的应用是求解三角函数和指数函数的导数。
例如,如果f(x) = cos(x^2),g(x) = x^2,则通过链式法则可以求解f'(x) = -2x * sin(x^2)。
三、隐函数法则隐函数法则是求解复合函数导数的另一种方法,它适用于隐式表达形式的复合函数。
1. 隐函数法则的定义如果函数y = f(u)是由u = g(x)隐式定义的,则y对x的导数可以通过链式法则和隐函数法则求解:dy/dx = (dy/du) * (du/dx)。
2. 隐函数法则的应用隐函数法则在物理和工程学中有着广泛的应用,例如在描述曲线运动的方程中,就需要对隐式函数进行求导。
四、实际问题中的应用复合函数导数在实际问题中有着广泛的应用,特别是在解决动态变化的问题时,复合函数导数的应用尤为重要。
1. 物理学中的应用在物理学中,复合函数导数可以描述物体的运动和变化规律。
例如,在描述加速度、速度和位移之间的关系时,就需要用到复合函数导数。