5.2.3
简单复合函数的导数
课标阐释
思维脉络
1.了解复合函数的概念.(数学抽象) 简 单 复 合 函 数 的 导 数
2.理解复合函数的求导法则,并能求
概念
简单的复合函数的导数.(逻辑推理、
求导法则——应用
数学运算)
激趣诱思
知识点拨
我们学习过基本初等函数,如指数函数、对数函数、幂函数、三角
函数、常数函数,我们可以把这些函数进行加、减、乘、除、乘方、
a=
.
分析:(1)设 P(x0,y0)→由 y'| = =2
0
求P(x0,y0)→由点到直线的距离求最小值
(2)求y'→由y'|x=0=2求a的值
)
探究一
探究二
探究三
素养形成
当堂检测
解析:(1)设曲线y=ln(2x-1)在点(x0,y0)处的切线与直线2x-y+3=0平行.
2
,∴y'| =
f'(x)=(
)
A.2cos 2x+2e2x
B.cos 2x+e2x
C.2sin 2x+2e2x
D.sin 2x+e2x
解析:因为f(x)=sin 2x+e2x,所以f'(x)=2cos 2x+2e2x.故选A.
答案:A
探究一
探究二
探究三
素养形成
当堂检测
3.(2020福建高二期末)已知f(x)=ln(2x+1)-ax,且f'(2)=-1,则a=(
(1)中间变量的选择应是基本函数结构;
(2)关键是正确分析函数的复合层次;
(3)一般是从最外层开始,由外及里,一层层地求导;