第五章力学量随时间的演化与对称性资料.
- 格式:ppt
- 大小:796.00 KB
- 文档页数:50
第五章 力学量随时间的演化与守恒量§1 力学量随时间的变化在经典力学中,处于一定状态下的体系的每一个力学量作为时间的函数,每一个时刻都有一个确定值;但是, 在量子力学中,只有力学量的平均值才可与实验相比较,力学量随时间的演化实质是平均值和测量值的几率分布随时间的演化。
一、守衡量力学量ˆA在任意态()t ψ上的平均值随时间演化的规律为 ˆˆ1ˆˆ,dA A A H dt t i ∂⎡⎤=+⎣⎦∂, 其中ˆH为体系的哈密顿量。
[证明] 力学量ˆA的平均值表示为()ˆ()(),()A t t A t ψψ=,()A t 对时间t 求导得 ()()ˆ()()()ˆˆ,()(),(),()ˆ11ˆˆˆˆ (),()(),()ˆ11ˆˆˆˆ (),()(),()1 d A t t t A A t t A t t dt t t t A H t A t t AH t i i t A t HA t t AH t i i tψψψψψψψψψψψψψ⎛⎫⎛⎫⎛⎫∂∂∂=++ ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫⎛⎫=++⎪ ⎪∂⎝⎭⎝⎭∂=-+ψ+∂=ˆˆˆ,AA H i t∂⎡⎤+⎣⎦∂⇒ˆ()1ˆˆ,d A t A A H dt i t∂⎡⎤=+⎣⎦∂ 1、 守恒量的定义若ˆA不显含t , 即ˆ0A t ∂∂=, 当ˆˆ,0A H ⎡⎤=⎣⎦,那么力学量ˆA 称为守恒量。
2、守恒量的性质(1)、在任意态()t ψ上,守恒量的平均值都不随时间变化0dA dt =。
(2)、在任意态()t ψ上,守恒量的取值几率分布都不随时间变化。
[证明] 由于ˆˆ[,]0A H =知,存在正交归一的共同本征函数组{}nψ(n 是一组完备的量子数),即 ˆˆn n nn n nH E A A ψψψψ⎧=⎪⎨=⎪⎩ 正交归一化条件(),n m mn ψψδ=对于体系的任意状态()t ψ可展开为: ()()n nnt a t ψψ=∑, 展开系数为()(),()n n a t t ψψ=在体系的任意态()t ψ上测量力学量ˆA 时,得到本征值nA 的几率为2|()|n a t , 而 ()()()()()()*2*()()()()()()(),,()(),,1()1() ,,()(),,11ˆ (),,()n n n n n n n n n n n n n n n da t da t d a t a t a t dt dt dtt t t t t t t t i t t i i t i t H t t i i ψψψψψψψψψψψψψψψψψψψψ=+∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫=-+ ⎪ ⎪∂∂⎝⎭⎝⎭=-+()()()()()()()()()()ˆ(),,()11ˆˆ (),,()(),,() (),,()(),,()0n n n n n n n n n n n n t H t t H t t H t i i E Et t t t i i ψψψψψψψψψψψψψψψψψψψψ=-+=-+= 这表明2|()|n a t 是与时间无关的量。
第4章 力学量随时间的演化与对称性4.1 复习笔记一、力学量随时间的演化1.守恒量对于力学量A ,其平均值随时间变化关系式如下A tH A i dt A d ˆ]ˆ,ˆ[1∂∂+=η 故对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,力学量A 对应算符不显含时间t ,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变.则把A 称为量子体系的一个守恒量.2.能级简并与守恒量的关系(1)守恒量与简并关系的定理定理 设体系有两个彼此不对易的守恒量F 和G ,即[F ,H]=0,[G ,H]=0,但[F ,G ]≠0,则体系能级一般是简并的.推论 如果体系有一个守恒量F ,而体系的某条能级部简并(即对应于某能量本征值E 只有一个本征态E ψ),则E ψ必为F 的本征态.(2)位力(virial )定理当体系处于定态下,关于平均值随时间的变化,有一个有用的定理,即位力virial )定理.设粒子处于势场V (r )中,Hamilton 量为)(2p 2r V mH += 则位力定理表述如下位力定理推论:若势场函数V(r)为r 的n 次齐次式,则有推论V T 2n =二、波包的运动,Ehrenfest 定理设质量为m 的粒子在势场V (r )中运动,用波包ψ(r ,t )描述.设粒子的Hamilton 量为)(2p 2r V mH += 作如下定义:则Ehrenfest 定理表述如下:三、Schr ödinger 图像与Heisenberg 图像(1)(1)式这种描述方式称为Schrödinger 图像(picture ).亦称Schrödinger 表象. 在Schtodlnger 图像中,态矢随时间演化,遵守Schrödinger 方程,而算符则不随时间的变化;与此相反,在Heisenberg 图像中,则让体系的态矢本身不随时间的变化而算符切随时间的变化,遵守Heisenberg方程.四、守恒量与对称性的关系1.对称性变换[Q,H]=0 (2)凡满足式(2)的变换,称为体系的对称性变换.物理学中的体系的对称性变换,总是构成一个群,称为体系的对称性群(symmetrygroup).2.对称性对应守恒量体系在Q变换下的不变性[Q,H]=0,应用到无穷小变换,就导致F就是体系的一个守恒量.这充分说明对称性变换Q必定对应一个守恒量F.典型的两个例子是:平移不变性对应动量守恒,空间旋转不变性对应角动量守恒.五、全同粒子体系与波函数的交换对称性1.全同粒子体系的交换对称性(1)全同性原理全同性原理:任何可观测到,特别是Hamilton量,对于任何两个粒子交换是不变的,即交换对称性.凡满足P ijψ=ψ的.称为对称(symmetric)波函数;满足P ijψ=-ψ的称为反对称(anti—symmetrle)波函数.(2)玻色子与费米子凡自旋为 整数倍(s=0,1,2,…)的粒子,波函数对于两个粒子交换总是对称的,如π介子(s=0).光子(s=1).在统计方法上,它们遵守Bose统计,故称为Bose 子.凡自旋为h的半奇数倍(s=1/2,3/2,…)的粒子,波函数对于两粒子交换总是反对称的,如电子,质子,中子等.它们遵守Fermi统计,故称为Fermi子.2.两个全同粒子组成的体系Pauli不相容原理:不允许有两个全同的Fermi子处于同一个单粒子态.Pauli原理是一个极为重要的自然规律,后来从量子力学波函数的反对称性来说明Pauli原理的是Heisenberg,Fermi和Dirac的贡献.3.N个全同Fermi子组成的体系设N个Fermi子分别处于k2<k z<…<k N态下,则反对称波函数可如下构成(3)P代表N个粒子的一个置换(permutation).式(3)常称为slater行列式,是归一化因子.4.N个全同Bose子组成的体系Bose子不受Pauli原理限制,可以有任意数目的Bose子处于相同的单粒子态.设有n i个Bose子处于k,态上(i=1,2,…,N),则该体系的归一化的对称波函数可表为4.2 课后习题详解4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ 1、φ 2、φ 3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi 子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态。
第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。
第五章 力学量随时间的演化与守恒量§1 力学量随时间的变化在经典力学中,处于一定状态下的体系的每一个力学量作为时间的函数,每一个时刻都有一个确定值;但是, 在量子力学中,只有力学量的平均值才可与实验相比较,力学量随时间的演化实质是平均值和测量值的几率分布随时间的演化。
一、守衡量力学量ˆA在任意态()t ψ上的平均值随时间演化的规律为 ˆˆ1ˆˆ,dA A A H dt t i ∂⎡⎤=+⎣⎦∂, 其中ˆH为体系的哈密顿量。
[证明] 力学量ˆA的平均值表示为()ˆ()(),()A t t A t ψψ=,()A t 对时间t 求导得 ()()ˆ()()()ˆˆ,()(),(),()ˆ11ˆˆˆˆ (),()(),()ˆ11ˆˆˆˆ (),()(),()1 d A t t t A A t t A t t dt t t t A H t A t t AH t i i t A t HA t t AH t i i tψψψψψψψψψψψψψ⎛⎫⎛⎫⎛⎫∂∂∂=++ ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫⎛⎫=++⎪ ⎪∂⎝⎭⎝⎭∂=-+ψ+∂=ˆˆˆ,AA H i t∂⎡⎤+⎣⎦∂1ˆˆ,A H i ⎡⎤+⎣⎦1、 守恒量的定义若ˆA不显含t , 即ˆ0A t ∂∂=, 当ˆˆ,0A H ⎡⎤=⎣⎦,那么力学量ˆA 称为守恒量。
2、守恒量的性质(1)、在任意态()t ψ上,守恒量的平均值都不随时间变化0dA dt =。
(2)、在任意态()t ψ上,守恒量的取值几率分布都不随时间变化。
[证明] 由于ˆˆ[,]0A H =知,存在正交归一的共同本征函数组{}nψ(n 是一组完备的量子数),即 ˆˆn n nn n nH E A A ψψψψ⎧=⎪⎨=⎪⎩ 正交归一化条件(),n m mn ψψδ=对于体系的任意状态()t ψ可展开为: ()()n nnt a t ψψ=∑, 展开系数为()(),()n n a t t ψψ=在体系的任意态()t ψ上测量力学量ˆA 时,得到本征值nA 的几率为2|()|n a t , 而 ()()()()()()*2*()()()()()()(),,()(),,1()1() ,,()(),,11ˆ (),,()n n n n n n n n n n n n n n n da t da t d a t a t a t dt dt dtt t t t t t t t i t t i i t i t H t t i i ψψψψψψψψψψψψψψψψψψψψ=+∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫=-+ ⎪ ⎪∂∂⎝⎭⎝⎭=-+()()()()()()()()()()ˆ(),,()11ˆˆ (),,()(),,() (),,()(),,()0n n n n n n n n n n n n t H t t H t t H t i i E Et t t t i i ψψψψψψψψψψψψψψψψψψψψ=-+=-+= 这表明2|()|n a t 是与时间无关的量。
第五章: 对称性及守恒定律[1]证明力学量Aˆ(不显含t )的平均值对时间的二次微商为: ]ˆ],ˆ,ˆ[[222H H A A dtd -= (H ˆ是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量Aˆ 不显含t ,有]ˆ,ˆ[1H A i dt A d= (1) 将前式对时间求导,将等号右方看成为另一力学量]ˆ,ˆ[1H A i的平均值,则有: ]ˆ],ˆ,ˆ[[1]ˆ],ˆ,ˆ[1[1222H H A H H A i i dt A d -== (2) 此式遍乘2即得待证式。
[2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。
(证明)设Aˆ是个不含t 的物理量,ψ是能量H ˆ的公立的本征态之一,求A ˆ在ψ态中的平均值,有:⎰⎰⎰=ττψψd AA ˆ*将此平均值求时间导数,可得以下式(推导见课本§5.1)(1) 今ψ代表Hˆ的本征态,故ψ满足本征方程式 ψψE H=ˆ (E 为本征值) (2) 又因为Hˆ是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτd AHd A H ⎰⎰⎰⎰⎰⎰=)ˆ(*)ˆ()~(ˆ* (3)(题中说力学量导数的平均值,与平均值的导数指同一量)(2)(3)代入(1)得:τψψτψψd A H id H A i dt A d )ˆ(*)ˆ(1)ˆ(ˆ*1⎰⎰⎰⎰⎰⎰-= ⎰⎰⎰⎰⎰⎰-=τψψτψψd A iE d A i E ˆ**ˆ* 因*E E =,而0=dtAd[3]设粒子的哈密顿量为 )(2ˆˆ2r V p H +=μ。
(1) 证明V r p p r dtd ∀⋅-=⋅μ/)(2。
(2) 证明:对于定态 V r T ∀⋅=2(证明)(1)z y x p z p y p xp r ˆˆˆˆˆˆ++=⋅,运用力学量平均值导数公式,以及对易算符的公配律: ]ˆ,ˆˆ[1)ˆˆ(H p r i p rdt d⋅=⋅)],,(ˆ21,ˆˆˆˆˆˆ[]ˆ,ˆˆ[2z y x V pp z p y p x H p r z y x +++=⋅μ)],,()ˆˆˆ(21,ˆˆˆˆˆˆ[222z y x V p p p p z p y p xz y x z y x +++++=μ)],,(,[21],ˆˆˆˆˆˆ[222z y x V zp yp xp p p p p z p y p xz y x z y x z y x +++++++=μ(2) 分动量算符仅与一个座标有关,例如xi p x ∂∂= ,而不同座标的算符相对易,因此(2)式可简化成:]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[222z z y y x x p p z p p y p p x H p rμμμ++=⋅ )],,(,ˆˆˆˆˆˆ[z y x V p z p y p xz y x +++ ],ˆˆ[],ˆˆ[],ˆˆ[]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21222V p z V p y V p xp p z p p y p p x z y x z z y y x x +++++=μμμ (3)前式是轮换对称式,其中对易算符可展开如下:x x x x p x pp x p p x ˆˆˆˆˆ]ˆ,ˆˆ[232-= x x x x x x p x p p x p p x p p x ˆˆˆˆˆˆˆˆˆˆˆ2223-+-= x x x x x p p x pp p x ˆ]ˆ,ˆ[ˆˆ]ˆ,ˆ[2+= 222ˆ2ˆˆx x x pi p i p i =+= (4) ],ˆ[ˆˆˆˆˆˆˆˆˆˆˆˆˆ],ˆˆ[V p x p V x V p x p x V V p x V p xx x x x x x =-=-= xV x i ∂∂=ˆˆ (5) 将(4)(5)代入(3),得:}{)ˆˆˆ(]ˆ,ˆˆ[222zV z y V y x V x i p p p i H p rz y x ∂∂+∂∂+∂∂+++=⋅ μ }ˆ{2V r pi ∀⋅+=μ代入(1),证得题给公式:V r pp r dt d ∀⋅-=⋅ μ2ˆ)( (6)(2)在定态ψ之下求不显含时间t 的力学量Aˆ的平均值,按前述习题2的结论,其 结果是零,令p r Aˆˆˆ ⋅= 则0)ˆˆ(*2=∀⋅-=⋅=⋅⎰⎰⎰V r p d p r p r dt d τμτψψ (7) 但动能平均值 μτψμψτ22ˆ*22p d p T =≡⎰⎰⎰由前式 V r T ∀⋅⋅=21[4]设粒子的势场),,(z y x V 是z y x ,,的n 次齐次式证明维里定理(Virial theorem )式中V是势能,T是动能,并应用于特例:(1)谐振子 T V = (2)库仑场 T V 2-=(3)T V n Cr V n 2,==(解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角痤标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数):∑=ijkkj i ijk z y x C z y x V ),,( (1)此处的k j i ,,暂设是正或负的整数,它们满足:n k j i =++ (定数)ijk C 是展开式系数,该求和式可设为有限项,即多项式。