结构力学——力法对称性的利用
- 格式:ppt
- 大小:1.01 MB
- 文档页数:21
第7章 力 法
7.1 复习笔记【知识框架】
【重点难点归纳】
一、概述(见表7-1-1) ★★
表7-1-1 概述
二、超静定次数的确定(见表7-1-2) ★★★★
表7-1-2 超静定次数的确定
三、力法的基本概念(见表7-1-3) ★★★
力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表7-1-3,此外,表中还归纳了超静定结构的力法分析步骤。
表7-1-3 力法的基本未知量、基本体系和基本方程
四、力法的典型方程(见表7-1-4) ★★★
表7-1-4 力法的典型方程
五、对称性的利用 ★★★★
1.对称结构及作用荷载的对称性(表7-1-5)
表7-1-5 对称结构及作用荷载的对称性
2.非对称荷载的处理(表7-1-6)
表7-1-6 非对称荷载的处理。
考研结构⼒学知识点梳理1.瞬变体系:本来是⼏何可变,经微⼩位移后,⼜成为⼏何不变的体系,成为瞬变体系。
瞬变体系⾄少有⼀个多余约束。
2.两根链杆只有同时连接两个相同的刚⽚,才能看成是瞬铰。
3.关于⽆穷远处的瞬铰:(1)每个⽅向都有且只有⼀个⽆穷远点,(即该⽅向各平⾏线的交点),不同⽅向有不同的⽆穷远点。
(2)各个⽅向的⽆穷远点都在同⼀条直线上(⼴义)。
(3)有限点都不在⽆穷线上。
4.结构及和分析中的灵活处理:(1)去⽀座去⼆元体。
体系与⼤地通过三个约束相连时,应去⽀座去⼆元体;体系与⼤地相连的约束多于4个时,考虑将⼤地视为⼀个刚⽚。
(2)需要时,链杆可以看成刚⽚,刚⽚也可以看成链杆,且⼀种形状的刚⽚可以转化成另⼀种形状的刚⽚。
5.关于计算⾃由度:(基本不会考)(1),则体系中缺乏必要约束,是⼏何常变的。
(2)若,则体系具有保证⼏何不变所需的最少约束,若体系⽆多余约束,则为⼏何不变,若有多余约束,则为⼏何可变。
(3),则体系具有多与约束。
是保证体系为⼏何不变的必要条件,⽽⾮充分条件。
若分析的体系没有与基础相连,应将计算出的W减去3.1.静定结构的⼀般性质:(1)静定结构是⽆多余约束的⼏何不变体系,⽤静⼒平衡条件可以唯⼀的求得全部内⼒和反⼒。
(2)静定结构只在荷载作⽤下产⽣内⼒,其他因素作⽤时,只引起位移和变形。
(3)静定结构的内⼒与杆件的刚度⽆关。
(4)在荷载作⽤下,如果仅靠静定结构的某⼀局部就可以与荷载维持平衡,则只有这部分受⼒,其余部分不受⼒。
(5)当静定结构的⼀个内部⼏何不变部分上的荷载或构造做等效变换时,其余部分的内⼒不变。
(6)静定结构有弹性⽀座或弹性结点时,内⼒与刚性⽀座或刚性节点时⼀样。
解放思想:计算内⼒和位移时,任何因素都可以分别作⽤,分别求解,再线性叠加,以将复杂问题拆解为简单情况处理。
2.叠加院⾥的应⽤条件是:⽤于静定结构内⼒计算时应满⾜⼩变形,⽤于位移计算和超静定结构的内⼒计算时材料还应服从胡克定律,即材料是线弹性的。
五.力法一.超静定结构概念和超静定次数的确定1.超静定结构的概念:有多余约束存在,支座反力和内力不能仅靠静力平衡方程确定的几何不变体系;2.超静定结构的性质:(1)多余约束反力的确定,除使用静力平衡条件外,还需考虑变形;(2)受力情况与材料的物理性质、截面几何性质有关系;(刚度)(3)去掉一些约束后,体系仍可以保持几何不变;(4)制造误差、支座移动、温度等原因能使结构产生内力;2.超静定次数的确定:(1)超静定次数=未知力个数-平衡方程的个数=多余未知力的个数=多余约束的个数=把结构变成静定结构时所需撤除的约束个数(2)将超静定结构变成静定结构的几种基本方法:A.去掉支座的一根链杆或切断一根链杆,相当于去掉一个约束;B.去掉一个单铰,相当于去掉两个约束;C.将刚性连接改成单铰连接,相当于去掉一个约束;D.刚性连接处切断,相当于去掉三个约束;(3)需要注意的几个问题:A去掉的约束必须是保证体系几何不变的多余约束;B.多余约束必须都拆除;C.去多余约束的办法不仅只有一种,只是要保证去掉约束后保证其几何不变性;D.去掉多余约束后的静定结构称该超静定结构的基本结构,由上知基本结构不唯一;二.计算超静定结构的基本方法(1)计算超静定结构的方法很多,但基本方法只有两种:力法、位移法;(2)力法:多余约束力为基本未知量,位移谐调建立平衡方程(3)位移法:位移为基本未知量,节点受力平衡建立平衡方程(4)力法位移法基本思路:把不会算的结构通过未知量转换成会算的结构即基本结构(5)力法与位移法计算步骤:A.选取基本结构、基本未知量;B.用关于力的或位移的代数方程组求解未知量;三.力法思想(1)取图b为基本结构,则相应的基本体系为图e,这种情况下,图a中C处可动铰支座被视为多余约束,X1为基本未知量;(2)图a为一次超静定;(3)力法方程的概念(以图b所示的基本结构为例):图a中,在F P作用下,体系将产生变形,但支座C处竖向位移为零(约束边界条件决定),想要静力等效,在基本体系1中(图e),基本结构在F P和基本未知量X1的作用下,C点的竖向位移为零;力法中,体系必须为线性体系,内力和位移才可以使用叠加原理,在图e 中,使用叠加原理保证C点的竖向位移为零是力法的基本思想;在F P作用下,基本结构C 点将发生竖向的位移分量Δ1P,同样,在基本未知量X1作用下,C点将产生竖向位移分量Δ11,Δ1P和Δ11必须保证C点竖向位移分量为零,则有Δ1P+Δ11=0由图乘法可以求得Δ1P和Δ11(X1的函数),然后通过C点位移为零建立方程,最终求得X1;(4)力法典型方程:⎪⎭⎪⎬⎫=∆+++=∆=∆+++=∆=∆+++=∆0X X X 0X X X 0X X X P 33332321313P 23232221212P 131********δδδδδδδδδ相同道理,如果是n 次超静定,力法方程可表示成为⎪⎪⎭⎪⎪⎬⎫=∆++++=∆++++=∆++++0X X X 0X X X 0X X X nF n nn 22n 11n F 2n n 2222121F 1n n 1212111δδδδδδδδδ矩阵表达式:0X X X nF F2F 1n 21nn 1n 1n n 22121n 11211=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∆∆∆+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡δδδδδδδδδ 柔度系数:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn 22n1n22212n 11211δδδδδδδδδ自由项:{}iF ∆根据位移互等定理,柔度矩阵是一个对称矩阵,主对角线元素ii δ称为主系数,主系数均为正值且不等于零。
结构力学——力法对称性的利用力法对称性是结构力学中常用的一种方法,可以有效简化结构分析的复杂性。
它基于结构的几何和物理特性,通过利用结构的对称性来减少需要考虑的自由度,从而简化结构力学问题。
力法对称性的利用可以在两个方面发挥作用:减少计算自由度和简化载荷分析。
首先,力法对称性可以减少计算自由度。
结构力学问题的求解通常需要计算结构的内力和变形。
结构的自由度越多,计算所需的计算量就越大,求解也就越复杂。
通过利用结构的对称性,我们可以将结构分为若干对称部分,仅对其中一个部分进行力学分析,然后通过对称性来得到其他部分的结果。
这样可以大大减少计算自由度,简化结构力学问题的求解过程。
具体来说,力法对称性可以应用于不同的结构部分,如杆件、板和壳体等。
例如,在杆件问题中,结构的对称性可以体现为几何对称性,如轴对称、平面对称等。
通过建立合适的坐标系和选择适当的参考点,可以简化结构的力学分析。
力法对称性还可以应用于简化载荷分析。
结构在受力时,通常存在很多不同的载荷情况,如重力、集中力、分布力等。
利用力法对称性可以简化对这些载荷的分析。
通过找到适当的对称轴或对称面,可以使得一些载荷分布具有对称性,从而简化分析。
通过减少载荷分布的复杂程度,可以更方便地计算结构的内力和变形。
需要注意的是,力法对称性在实际应用中需要满足一定的条件。
首先,结构必须存在对称性,即具有一定的几何和物理特性。
其次,结构的对称性必须与载荷情况相匹配。
如果对称性不满足这些条件,力法对称性可能无法有效地简化结构力学问题。
总之,力法对称性在结构力学中的应用可以大大简化力学分析的困难。
通过减少计算自由度和简化载荷分析,可以提高结构力学问题的求解效率。
利用力法对称性,结构工程师可以更加方便地进行结构设计和分析,提高工作效率和设计质量。
第四章 力法4-1 利用对称与反对称条件,简化图4-15所示各平面刚架结构,要求画出简化图及其位移边界条件。
(a)(a)解:对称结构,在对称载荷作用下,在对称轴上反对称内力为零。
由静力平衡条件∑=0X可得23PN =再由两个静力平衡条件,剩余4个未知力,为二次静不定。
本题中通过对称性条件的使用,将6次静不定的问题转化为2次静不定。
PP(b)(b)解:对称结构,在反对称载荷作用下,在对称轴上对称的内力为零。
受力分析如图所示有2根对称轴,结合平衡方程,剩下三个未知数,为3次静不定。
本题中通过对称性条件的使用,将6次静不定问题转化为3次静不定。
(c)(c)解:对称结构,在对称载荷作用下,在对称轴上反对称内力为零。
有一根对称轴,减少了两个静不定度本题中通过对称性条件的使用,将3次静不定问题转化为1次静不定。
4-2图4-16所示桁架各杆的EA均相同,求桁架各杆的内力。
(a)(a)解:1、分析结构静不定次数。
结构有4个结点8个自由度,6根杆6个约束,3个外部约束。
因此结构静不定次数为1,f=1。
2、取基本状态。
切开2-4杆,取<P>,<1>状态,各杆内力如图。
1234P-P √2P<P>1234P<1>11√22√22√22√22计算影响系数∑=∆EAl N N i p P 11()2422222+=⎪⎪⎭⎫ ⎝⎛⨯+⨯=EA Pa P P EA a ∑=EAl N i1211δ()22222142222+=⎪⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯=EA a EA a 列正则方程:()()02242221=+++P X解之()P X 42321-=3、由11N X N N P +=,得()P X N 423220112-=⎪⎪⎭⎫ ⎝⎛-⋅+= ()P X P N 42212113+=⋅+=()P X N 423220114-=⎪⎪⎭⎫ ⎝⎛-⋅+=()P X N 423220123-=⎪⎪⎭⎫ ⎝⎛-⋅+=()P X N 423210124-=⋅+=()P X P N 42122134+-=⎪⎪⎭⎫ ⎝⎛-⋅+-=4、校核。
结构力学第20次课 力法6-5 位移法7-6结构的对称性 foxscarlet12012-5-17 《结构力学》第20次课 第6章力法6-5P225与第7章位移法7-6P302内容6-5 7-6 对称性利用1 对称性(1)结构的对称性:对称结构是指几何形状、支座情况、刚度都关于某轴对称。
(2)荷载的对称性: 对称荷载 反对称荷载 任何荷载都可以分解成对称荷载+反对称荷载两部分。
2 取对称的基本体系计算: 不论在何种外因作用下,对称结构应考虑采用对称的基本体系计算。
沿对称轴将梁切开,三对多余未知力中,弯矩X 1和轴力X 2是 未知力,剪力X 3是 未知力。
对称未知力产生的单位弯矩图和变形图是对称的;反对称未知力产生的单位弯矩图和变形图是反对称的。
如果荷载对称,M P 对称,Δ3P =0,X 3=0, 未知力为零;如果荷载反对称,M P 反对称,Δ1P =0, Δ2P =0, X 1= X 2 =0, 未知力为零。
3 取等代结构计算对称结构的变形特点,针对切开对称轴处是刚结点。
注意,如果对称轴上是铰结点有所不同。
(1)对称结构在对称荷载作用下位于对称轴上的截面,水平位移和转角为零,只有竖向位移。
(2)对称结构在反对称荷载作用下位于对称轴上的截面,竖向位移为零,水平位移和转角不为零。
① 奇数跨(无中柱)对称结构在对称荷载作用下的等代结构 §7-6 对称结构的计算奇数跨刚架受对称荷载A. 奇数跨结构(无中柱对称结构)F PF P(1) 对称荷载F P半边结构对称轴截面内力结构与荷载3 取等代结构计算1扩展练习 奇数跨结构受对称荷载作用llqllAB例2. 图示结构EI = 常数。
对称性只有竖向荷载作用1X 3=3X 2X 1X 2=【例题】利用对称性计算图示结构,绘制弯矩图。
(EI=常l↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ql/2l/2l/2l/2(a )ldbFPFP4 无弯矩状态判定对称结构正对称荷载。