第一型线面积分
- 格式:ppt
- 大小:279.00 KB
- 文档页数:15
(一)对弧长的曲线积分(第一类) (1)对光滑曲线弧():,()()x t L t y t =⎧≤≤⎨=⎩ϕαβψ(,)d [(),(Lf x y s f t t t βαϕψ=⎰⎰;(2)对光滑曲线弧:()(),L y x a x b ϕ=≤≤(,)d (,())bLaf x y s f x x x ϕ=⎰⎰;(3)对光滑曲线弧:()(),L r r θαθβ=≤≤ (二)对坐标的曲线积分(第二类) (1)对有向光滑弧():()x t L y t φψ=⎧⎨=⎩,:t αβ→,{}(,)d (,)d [(),()]'()[(),()]'()d LP x y x Q x y y P t t t Q t t t t βαφψφφψψ+=+⎰⎰;(2)对有向光滑弧:(),:L y x x a b ϕ=→, {}(,)d (,)d [,()][,()]'()d bLaP x y x Q x y y P x x Q x x x x ϕϕϕ+=+⎰⎰;(格林公式)d d L D Q P Pdx Qdy x y x y ⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰Ñ; (斯托克斯公式)R Q P R Q P Pdx Qdy Rdz dydz dzdx dxdy y z z x x y Γ∑⎛⎫⎛⎫∂∂∂∂∂∂⎛⎫++=-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎰⎰⎰ÑLdydz dzdx dxdy Pdx Qdy Rdz x y z PQR∑∂∂∂++=∂∂∂⎰⎰⎰Ñ(一)对面积的曲面积分(第一型) 计算口诀:一投二代三换,曲积化为重积算. (1)对光滑曲面:(,),(,)x y z z x y x y D ∑=∈,(,,)d (,,(,d x yD f x y z S f x y z x y x y ∑=⎰⎰⎰⎰;(2)对光滑曲面:(,),(,)y z x x y z y z D ∑=∈,(,,)d [(,),,yzD f x y z S f x y z y z ∑=⎰⎰⎰⎰;(3)对光滑曲面:(,),(,)x z y y x z x z D ∑=∈,(,,)d [,(,),xzD f x y z S f x y x z z ∑=⎰⎰⎰⎰(二)对坐标的曲面积分(第二型) 计算口诀:一投二代三定,曲积化为重积算. 1、对光滑曲面:(,),(,)x y z z x y x y D ∑=∈,则(,,)d d (,, (,))d d x yD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰(上侧正,下侧负)2、对光滑曲面:(,),(,)y z x x y z y z D ∑=∈,(,,)d d ((,), ,)d d y zD P x y z y z P x y z y z y z ∑=±⎰⎰⎰⎰; (前侧正,后侧负)3、对光滑曲面:(,),(,)x z y y x z x z D ∑=∈,(,,)d d (,(,),z )d d z xD Q x y z z x Q x y x z z x ∑=±⎰⎰⎰⎰(右侧正,左侧负)合一投影公式:(,)z z x y =()()xy D z z Pdydz Qdzdx Rdxdy P Q R dxdy x y ∑⎡⎤∂∂++=⋅-+⋅-+⎢⎥∂∂⎣⎦⎰⎰⎰⎰ (高斯公式)()d d d d d d d d d P Q RP y z Q z x R x y x y z x y z∑Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰Ò; ()()cos cos cos d =d d d P Q R P Q R S x y z x y z∑Ω∂∂∂α+β+γ++∂∂∂⎰⎰⎰⎰⎰。
一.第一类线面积分的简化充分利用积分曲线与曲面的方程与对称性.例.求(22LI x x y ds ⎡⎤=++⎣⎦⎰ ,其中()22:11L x y +-=.解.(((22222LLLI y ds yds ds π⎤=+=+=+=+⎦⎰⎰⎰. 例.求()I xy z ds Γ=+⎰ ,其中2221:0x y z x y z ⎧++=Γ⎨++=⎩. 解.()()()1233I xyds x y ds xy yz zx ds x y z ds ΓΓΓΓ=-+=++-++=⎰⎰⎰⎰ ()()22221110663x y z x y z ds ds πΓΓ⎡⎤++-++-=-=-⎣⎦⎰⎰ . 注.求()23I x y z ds Γ=++⎰ ,其中2221:0x y z x y ⎧++=Γ⎨+=⎩. 解.()()32333002I x y z ds xds zds x y ds ΓΓΓΓ=++=+=++=⎰⎰⎰⎰ . 例.求()2I x dS ∑=⎰⎰ ,其中222:2x y z y ∑++=.解.()()()222222222342222I x y z dS x y dS x y z dS ∑∑∑=++=+=++=⎰⎰⎰⎰⎰⎰()441416ydS y dS dS π∑∑∑=-+=⎰⎰⎰⎰⎰⎰ .二.第二类线面积分的估值例.设()33cos :02sin x a t L t y a t π⎧=≤≤⎨=⎩,逆时针方向,()()222L ydx xdy F a x xy y -=++⎰ , 证明:()lim 0a aF a →+∞=. 解.设()222yP xxy y=++,()222xQ xxy y-=++,则()LF a Pdx Qdy =+=⎰(),max 6n LLLP Q e ds ds a ⋅≤≤=⋅⎰⎰⎰,而22222x y x xy y +++≥()3322222432a x xy y x y =≤≤+++,故 ()2192F a a ≤,因此()lim 0a aF a →+∞=.例.设∑为圆柱体()()()2200413x x y y z -+-≤≤≤的外表面,证明:()()22cos sin 2x y dydz xy dzdx dxdy ∑+++≤⎰⎰ . 证.()n n A dS A e dS A e dS A dS dS ∑∑∑∑∑⋅=⋅≤⋅≤≤⎰⎰⎰⎰⎰⎰⎰⎰,证毕.注.第二类线面积分的估值除了转化为第一类线面积分,也可以 用格林公式和高斯公式转化为重积分.例.设22:0L x y x y +++=,逆时针,证明:22cos sin Lx y dy y x dx -≤⎰证.左式()()2222cos sin cos sin 2DDy x d x x d πσσ=+=+≤⎰⎰⎰⎰,证毕.例.设22:1L x y +=,逆时针,证明:sin sin 222545y x Lxe dy ye dx x y π--≥+⎰. 证.左式sin sin sin sin sin sin 222254545y x y x y xL D D xe ye e e e e dy dx d y x y x σ---⎛⎫+=-=+≥= ⎪-+-+⎝⎭⎰⎰⎰⎰⎰ ()sin sin 122555x xD D e e d d σσπ-+≥=⎰⎰⎰⎰,即得,证毕. 三.第二类线积分的计算 例.求224Lxdy ydxI x y-=+⎰,其中L 从()1,0A -沿y =到()1,0B ,然后 再沿直线到()1,2D -的有向曲线.解一. cos :sin x tAB y t=⎧⎨=⎩,:0t π-→,:1BD y x =-+,:11x →-,故12221374cos sin 521288dt dx I t t x x ππππ---=+=+=+-+⎰⎰; 解二.由于Q Px y ∂∂=∂∂,故取()1,1C --,()1,1E -,()1,2F ,则 ACCEEBBFFDI =++++⎰⎰⎰⎰⎰;解三.除原点,Q Px y ∂∂=∂∂,取222:4C x y r +=,逆时针,则L DA DAI +=-=⎰⎰ 222222241172488CDAx y r xdy ydx dy dxdy r r y πππ+≤---=-=-=+⎰⎰⎰⎰⎰. 注.若在区域D 内Q Px y ∂∂=∂∂,则(1)当D 单连通时,0CPdx Qdy +=⎰ ; (2)当D 内有洞时,对所有绕洞的闭曲线C ,CPdx Qdy +=⎰ 常数.例.求()()()()22222222222222L y y x xI dx dy x y x y x y x y ⎡⎤⎡⎤-+=++-⎢⎥⎢⎥-+++-+++⎢⎥⎢⎥⎣⎦⎣⎦⎰ , 其中22:9L x y +=,取逆时针方向.解.取()2221:2L x y r -+=,()2222:2L x y r ++=,均为逆时针方向,则12L L I =+⎰⎰ ,而()()112222222222222r L L B y y x x dx dy d r r r x y x y σπ⎡⎤⎡⎤-+-=++-==-⎢⎥⎢++++⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ , 类似地,22L π=-⎰ ,故224I πππ=--=-.例.求x y z dx y z x dy z x y dz I +-++-++-=,其中的Γ为曲线22211x y z x y z ⎧++=⎨++=⎩上逆时针从()1,0,0A 到()0,0,1B 的一段弧.解一.2221:1x y z x y z ⎧++=Γ⎨++=⎩在xOy 上的投影为22:0x xy y x y 'Γ++--=,22223x y x xy y ξηξηξη=-⎧⎨=+⎩++=+,故2222032x xy y x y ξηξ++--=⇒+-=2211333ξη⎛⎫-+= ⎪⎝⎭,令11cos 3311cos 1133cos 33121cos 33x t t t y t t tz x y tξη⎧=+-⎪⎧⎪=+⎪⎪⎪⇒=++⎨⎨⎪⎪=⎪⎪⎩=--=-⎪⎩,又:013z t ππ→⇒=-→,故3I dt ππ==⎰. 解二.()()()12121212BABAI z dx x dy y dz I I ΓΓ+=-+-+-=-=-⎰⎰⎰,其中()11,1,1rot 12,12,12121212n ijkI z x y e dS x y z z x y∑∑∂∂∂=---⋅==∂∂∂---⎰⎰⎰⎰()11,1,12122,2,23332I dS ππ∑∑⎡⎤⎛⎫=---==--⎥ ⎪ ⎪⎥⎝⎭⎦⎰⎰, ()()()112001211221I x dx d x x dx =--+-=-=-⎡⎤⎣⎦⎰⎰,故I =.注.∑是边长为的等边三角形的外接圆减去一个小圆缺. 解三.代入1z x y =--,则()()221I x y dx x y dy 'Γ=+---=⎰()()1042216216196D OAOA x dx d x dx σπ'Γ+⎛⎫--=---=-+= ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰ . 注.求()()()22222223I y z dx z x dy x y dz Γ=-+-+-⎰,其中1:2x y x y z ⎧+=Γ⎨++=⎩,从z 轴正向看为逆时针方向.解.代入2z x y =--,则()()2222223242I x y z dx x y z dy 'Γ=-+-+-++=⎰()12221224xyxyD D x y d d σσ--+=-=-⎰⎰⎰⎰.例.求()22222ydx xdy z x y dzI x y Γ--+=+⎰,其中22221:1x y a b x y z ⎧+=⎪Γ⎨⎪++=⎩,从z 轴正向 看逆时针. 解.2222rot ,,20y xz x y x y ⎛⎫-=⎪++⎝⎭,但是Γ张成的曲面均与z 轴有交点, 故不能直接用斯托克斯公式,注意到对所有逆时针围绕z 轴的1Γ,Γ与1-Γ均张成一个围绕z 轴的曲面,故()111I Γ+-Γ-ΓΓ=-=⎰⎰⎰ ,于是取2211:0x y z ⎧+=Γ⎨=⎩,则122DI ydx xdy d σπΓ=-=-=-⎰⎰⎰ . 四.第二类面积分的计算注.若12∑=∑+∑关于xOy 面对称,1∑与2∑在xOy 面上的投影相反, 则当()(),,,,R x y z R x y z -=时,(),,0R x y z dxdy ∑=⎰⎰;当()(),,,,R x y z R x y z -=-时,()()1,,2,,R x y z dxdy R x y z dxdy ∑∑=⎰⎰⎰⎰.例.求()()()I y z dydz z x dzdx x y dxdy ∑=-+-+-⎰⎰,其中∑为半球面z =222x y x +=截下部分的上侧.解.由于∑关于xOz 面对称,故()()I y z dydz x y dxdy ∑=-+-⎰⎰,又22222424220x x y x zz x x y z x z y zz z +=⎧-++=⇒⇒=⎨+=⎩,y yz z -=,故 ()()()22,0,,,1x y x I y z x y dxdy y z x y dxdy z z z ∑∑---⎛⎫⎡⎤=--⋅--=-+-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰(()22222xy D x y x y x y d d σσπ+≤⎡⎤+-=⋅=⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰.例.求2222cos cos cos dydz dzdx dxdyI x x y z z∑=+-⎰⎰,其中2222:x y z R ∑++=外侧. 解.()222,,211,,cos cos cos x y z I dS x x y z z R ∑⎛⎫=-⋅=⎪⎝⎭⎰⎰ 2222221211211cos cos cos cos cos cos y dSdS dS R x y z R x z R z∑∑∑⎛⎫⎛⎫+-=-== ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰22224tan x y R R π+≤=⎰⎰.例.求()32222xdydz ydzdx zdxdyI xy z∑++=++⎰⎰,其中()()()22211:1025167x y z z --∑++=≥ 上侧.解.取1:z ∑=()()22222211:0,12516x y z x y r ⎛⎫--∑=+≥+≤ ⎪ ⎪⎝⎭,均取下侧,则12121312I xdydz ydzdx zdxdy r π∑+∑+∑∑∑-∑=--=++=⎰⎰⎰⎰⎰⎰⎰⎰ . 注.若()22:212z x y z ∑=+--≤≤外侧,可取()221:24z x y ∑=+≤上侧,()222:11z x y ∑=-+≤下侧,22223:x y z r ∑++=外侧,则 ()121231231=I xdydz ydzdx zdxdy r ∑+∑+∑∑∑∑∑∑=--=++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰换曲面,再用高斯公式.。
考研数学考点解析及必考题型总结考研数学考点分析及和考题型总结考研数学的卷种分三种,分别为数学一、数学二、数学三。
这三个卷中针对的专业不同,须使用数学一的招生专业为工学门类中的力学、机械工程、光学工程、仪器科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、交通运输工程、传播与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业,授工学学位的管理科学与工程的一级学科。
工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科,专业的选用数学一,对数学要求较高的选用数学二。
专业不同对数学的要求自然不同,从难度看数学一最难,其次是数学二,最后是数学三,从考试范围看,数学一考试范围最多,数学三次之,最后,数学二,三种卷中大部分考试内容是一样的,数一数二数三又各有自己特点和单独考查的内容。
下面跨考教育数学教研室边一老师就数学一单独考查内容进行一一盘点。
一元函数微分学:隐函数求导、曲率圆和曲率半径;一元积分学:旋转体的侧面积、平面曲线的弧长、功、引力、压力、质心、形心等;向量代数与空间解析几何:向量、直线与平面、旋转曲面、球面、柱面、常用的二次曲面方程及其图形、投影曲线方程;多元函数微分学:方向导数和梯度、空间曲线的切线与法平面、曲面的切平面和法线;隐函数存在定理;多元函数积分学:三重积分、第一型曲线积分、第二型曲线积分、第一型曲面积分、第二型曲面积分、格林公式、高斯公式、斯托克斯公式、散度、旋度;无穷级数:傅里叶级数;微分方程:伯努利方程、全微分方程、可降阶的高阶微分方程、欧拉方程。
以上内容为数学一单独考查的内容,是数学一特有的内容,所以这些内容每年必考。
其中:多元函数积分学中曲线曲面积分三重积分几乎每年必考,常与空间解析几何一起考查,尤见于大题,今年(2017年)考查了第一型曲面积分及投影曲线,散度旋度常见于小题。
一 基本要求1. 理解两类线面积分的概念,掌握两类线面积分的性质。
2. 掌握两类线积分以及两类面积分之间的联系和区别,会计算两类线面积分。
3. 熟练掌握格林(Green)公式,会用平面曲线积分与路径无关的条件。
4. 熟练掌握高斯(Gauss)公式,斯托克斯(Stokes)公式,会计算空间曲线积分5. 会用两类线面积分求一些几何量与物理量(如曲面面积,弧长,质量,重心,转动惯量,功等)。
6. 了解散度,旋度以及场论的概念及其计算方法.二 学习指导【11-1】第一型曲线积分的要点是什么? 答 第一型曲线积分是关于曲线弧长的积分(22)()(dy dx ds +=),计算时应根据不同的曲线方程变换相应的,转换成定积分. ds 【11-2】关于第一型曲线积分的对称性.1.设L 为光滑曲线,且关于轴对称,为曲线y 1L L 位于轴右侧的弧段, 在y (,)f x y L 上的连续,则10(,)2(,)LL f x f x y ds f x y ds f x ⎧⎪=⎨⎪⎩∫∫为的奇函数为的偶函数2. 设L 为光滑曲线,L 的方程关于y x ,具有轮换性,为(,)f x y L 上的连续函数,则(,)(,)LLf x y ds f y x ds =∫∫,3. 设为光滑的空间曲线,ΓΓ的方程关于z y x ,,具有轮换性,为上的连续函数,则(f Γ∫∫∫ΓΓΓ==ds z f ds y f ds x f )()()(222)()()(dz dy dx ds ++=)4.当被积函数1),(=y x f 时,(弧长计算公式)∫=LLds ds y x f ),(∫……………………………………………………………………………… 【11-3】第二型曲线积分的主要计算方法.(1) 将曲线方程(直角坐标,参数方程,极坐标方程)代入后化定积分计算. (2) 用格林(Green)公式化二重积分计算. (3) 用平面曲线积分与路径无关的条件计算.………………………………………………………………………………………… 【11-4】第一型曲面积分的要点是什么?计算应注意什么?答 第一型曲面积分是关于曲面面积的积分。