直角坐标系中的位似图形练习题演示.doc
- 格式:pdf
- 大小:150.12 KB
- 文档页数:8
第2课时 平面直角坐标系中图形的位似变换知识点 1 位似变换与坐标的变化1.如图22-4-14,在平面直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则点C 的坐标为( )图22-4-14A .(2,1)B .(2,0)C .(3,3)D .(3,1)2.教材练习第1题变式△ABC 的顶点坐标为A (0,2),B (-3,5),C (-6,3).按如下方式对△ABC 进行变换,不是位似变换的是( )A .(x ,y )→(23x ,23y )B .(x ,y )→(-2x ,-2y )C .(x ,y )→(y ,x )D .(x ,y )→(2x ,2y )3.如图22-4-15,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO 与△A ′B ′O ′是以点P 为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P 的坐标为( )图22-4-15A .(0,0)B .(0,1)C .(-3,2)D .(3,-2)4.2018·邵阳如图22-4-16,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .以坐标原点O 为位似中心将△AOB 缩小为原图形的12,得到△COD ,则CD 的长是( )图22-4-16A .1B .2C .4D .2 55.如图22-4-17,等腰三角形OBA 和等腰三角形ACD 是位似图形,则这两个等腰三角形位似中心的坐标是________.图22-4-176.在平面直角坐标系中有四个点A (0,-2),B (3,2),C (1,-1),D (-2,3).如果将各点的横、纵坐标都乘3,得到点A ′,B ′,C ′,D ′,那么四边形A ′B ′C ′D ′与四边形ABCD 的相似比为________.7.如图22-4-18,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶ 2.若点A 的坐标为(0,1),则点E 的坐标是________.图22-4-188.在平面直角坐标系中,已知A (8,4),B (8,0)两点,以坐标原点O 为位似中心,相似比为14,把线段AB 缩小后得到线段A ′B ′,则线段A ′B ′的长等于________.知识点 2 在平面直角坐标系中画位似图形9.如图22-4-19,△ABC 三个顶点的坐标分别为A (0,-3),B (3,-2),C (2,-4),正方形网格中,每个小正方形的边长是1个单位.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的相似比为2∶1,并直接写出点A 2的坐标.图22-4-1910.如图22-4-20,已知点O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以点O为位似中心在y轴的左侧将△OBC放大为原来的2倍(即新图形与原图形的相似比为2∶1),得到△OB′C′,画出图形;(2)分别写出B,C两点的对应点B′,C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出点M的对应点M′的坐标.图22-4-2011.若△ABC 的顶点坐标分别为(3,2),(4,3),(6,5),△DEF 的顶点坐标分别为(32,1),(2,32),(3,52),则△DEF 与△ABC 的对应边的比为( )A .2∶1B .1∶2C .1∶3D .1∶412.2018·潍坊在平面直角坐标系中,P (m ,n )是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的2倍,则点P 的对应点的坐标为( )A .(2m ,2n )B .(2m ,2n )或(-2m ,-2n )C .(12m ,12n )D .(12m ,12n )或(-12m ,-12n )13.如图22-4-21,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )图22-4-21A .-12aB .-12(a +1)C .-12(a -1)D .-12(a +3)14.如图22-4-22,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是________.图22-4-2215.如图22-4-23,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点坐标分别为(1,3),(2,5).若△ABC和△A1B1C1是位似图形,则△A1B1C1的第三个顶点的坐标为________.图22-4-2316.如图22-4-24,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB′O′是△ABO关于点A的位似图形,且点O′的坐标为(-1,0),则点B′的坐标为________.图22-4-2417.如图22-4-25,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标; (2)以原点O 为位似中心,在原点的另一侧画出△A 2B 2C 2,使AB A 2B 2=12.图22-4-25教师详解详析1.A [解析] 由A(6,3),B(6,0),知线段AB =3.因为AB ⊥x 轴,线段AB 到线段CD 的变换是以原点O 为位似中心且相似比为13的位似变换,所以CD =1,OD =2,即C(2,1).故选A.2.C3.C [解析] 如图所示,点P 即为所求,故点P 的坐标为(-3,2).4.B 5.(-2,0) 6.3∶1 7.(2,2)8.1 [解析] 根据A(8,4),B(8,0)可得AB =4.因为相似比为14,所以把线段AB 缩小后的线段A′B′的长等于14AB =1.9.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.点A 2的坐标为(-2,-2).10.解:(1)分别延长BO ,CO 到点B′,C′,使OB′,OC′的长度是OB ,OC 长度的2倍,顺次连接三点即可.如图.(2)B′(-6,2),C′(-4,-2).(3)点M 的对应点M′的坐标为(-2x ,-2y). 11.B12.B [解析] 通过位似把△AOB 放大到原来的两倍,则对应点的横、纵坐标分别乘2或-2,故点P(m ,n)的对应点的坐标为(2m ,2n)或(-2m ,-2n).13.D [解析] 把图形向右平移1个单位,则点C 与坐标原点O 重合,点B′的横坐标变为a +1,此时△ABC 以原点为位似中心的位似图形是△A′B′C ,则与点B′对应的点B 的横坐标为-12(a +1),把该点向左平移1个单位,则得到点B 的坐标为-12(a +1)-1,即为-12(a +3).14.(1,0) 或(-5,-2) 15.(3,4)或(0,4)16.(53,-4) [解析] 如图,作出△AOB 的位似图形△AO′B′,过点B′作x 轴的垂线,垂足为C ,过点B 作x 轴的垂线,垂足为E.∵△AB′O′是△ABO 关于点A 的位似图形, ∴AO AO′=BEB′C. ∵点A 的坐标为(3,0),点O′的坐标为(-1,0),点B 的坐标为(2,-3), ∴AO =3,AO′=4,BE =3,∴34=3B′C ,∴B′C =4.易得△O′B′C ∽△OBE ,∴OE CO′=BEB′C ,即2CO′=34,∴CO′=83,∴OC =83-1=53, ∴点B′的坐标为(53,-4).17.解:(1)△A 1B 1C 1如图所示,A 1(1,-3),B 1(4,-2),C 1(2,-1).(2)△A 2B 2C 2如图所示.。
平面直角坐标系中的位似-练习一、选择题1.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4)B. (-1,-2)C. (-2,-4)D. (-2,-1)2.如图,矩形OABC的顶点O是坐标原点,边OA在x轴上,边OC在y轴上.若矩形OA1B1C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,则点B1的坐标是()A. (3,2)B. (-2,-3)C. (2,3)或(-2,-3)D. (3,2)或(-3,-2)3. 如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC 的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. - aB. -(a+1)C. -(a-1)D. -(a+3)4. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A. (3,3)B. (4,3)C. (3,1)D. (4,1)二、解答题5. 如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(-1,1),点C的坐标为(-4,2),求这两个正方形位似中心的坐标.(平面直角坐标系中的位似-练习参考答案一、选择题1. C.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A的坐标是(1,2),则点A′的坐标是(-2,-4),故选:C.2. D.解:∵若矩形OA1B1C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,∴两矩形的相似比为1:2,∵B点的坐标为(6,4),∴点B1的坐标是(3,2)或(-3,-2).故选D.3.D. 解:∵点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.点B的对应点B′的横坐标是a,∴FO=a,CF=a+1,∴CE=(a+1),∴点B的横坐标是:-(a+1)-1=-(a+3).故选D.4.A. 解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选:A.二、解答题5.解:①当两个位似图形在位似中心同旁时,位似中心就是CF与x轴的交点,设直线CF解析式为y=kx+b,将C(-4,2),F(-1,1)代入,得,解得即y=-x+,令y=0得x=2,∴O′坐标是(2,0);②当位似中心O′在两个正方形之间时,可求直线OC解析式为y=-x,直线DE解析式为y=x+1,联立,解得,即O′(-,).综上所述,两个正方形位似中心的坐标为:(2,0)或(-,)。
《位似》习题一、选择题(每小题5分,共25分)1.下列每组的两个图形不是位似图形的是()A.B.C.D.2.如图所示的两个三角形是位似图形,它们的位似中心是( )A.点O B.点P C.点M D.点N第2题图第3题图3.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A 的坐标为(1,0),则E点的坐标为( )A.(2,0) B.(0,2) C.(2,2) D.(2,2)4.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.125.关于对位似图形的表述,下列命题正确的是( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.A.①②B.①④C.②③D .③④二、填空题(每小题5分,共25分)6.下列四幅图中的两个图形属于位似图形的是__________.(将序号填入横线上)B DCAEB①②③④7.如图所示,DC∥AB,OA=2OC,则OCD△与OAB△的位似比是__________.8.如图所示,△ABC与△A′B′C′是位似图形,且位似比是1:2,若AB=2cm,则A′B ′=_________cm.第7题图第8题图第10题图9.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是__________.10.如图,将△DE F缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP、FP,取它们的中点B、C,得到△ABC,则下列说法正确的有________ __个.①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1:2;④△ABC与△DEF的面积比是1:2.三、解答题(共50分)11.(10分)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出位似中心.12.(10分)如图,在方格纸上,与是关于点O为位似中心的位似图形,他ABC∆111CBA∆们的顶点都在格点上.(1)画出位似中心O;(2)求出与的位似比;ABC∆111CBA∆CABD E(2)(1)O(4)(5)(3)以O 点为位似中心,再画一个使它与的位似比等于3222C B A∆13.(10分)如图,△ABC 在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的位似图形;A B C '''△(3)计算的面积S .A B C '''△14.(10分)如图,已知矩形ABCD 与矩形AB C D '''是位似图形,A 为位似中心,已知矩形ABCD 的周长为24,4,2BB DD ''==.求AB 与AD 的长.15.(10分)如图,在平面直角坐标系中,△AOB 的顶点坐标分别为A (2,1)、O (0,0)、B (1,-2).(1)P (a ,b )是△AOB 的边AB 上一点,△AOB 经平移后点P 的对应点为P 1(a -3,b +1),请画出上述平移后的△A 1O 1B 1,并写出点A 1的坐标;DB 'C 'D(2)以点O为位似中心,在y轴的右侧画出△AOB的一个位似△A2OB2,使它与△AOB的相似比为2:1,并分别写出点A、P的对应点A2、P2的坐标;(3)判断△A2OB2与△A1O1B1能否是关于某一点Q为位似中心的位似图形,若是,请在图中标出位似中心Q,并写出点Q的坐标.参考答案1.B【解析】根据位似图形的概念对各选项逐一判断,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形;据此可得A、C、D三个图形中的两个图形都是位似图形;而B的对应顶点的连线不能相交于一点,故不是位似图形.故选B.2.B.【解析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.点P在对应点M和点N所在直线上,故选B.3.C【解析】由题意可得OA:OD=1:2,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(1,0),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选C.4.D.【解析】∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.5.C【解析】如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,这个点是位似中心,但不是所有的相似图形都是位似图形,并且位似图形上对应点与位似中心的距离之比等于位似比.解:①相似图形不一定是位似图形,位似图形一定是相似图形,错误;②位似图形一定有位似中心,是对应点连线的交点,正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,正确;④位似图形上对应点与位似中心的距离之比等于位似比,错误.故选C.6.①②③【解析】根据位似图形的定义分析各图,对各选项逐一分析,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,①②③三个图形中的两个图形都是位似图形;④中的两个图形是相似三角形,但不符合概念,故不是位似图形.故填①②③.7.1︰2【解析】先证明△OAB∽△OCD,△OCD与OAB的对应点的连线都过点O,所以可得△OC D与△OAB的位似,即可求得△OCD与△OAB的位似比为OC:OA=1:2.解:∵DC∥AB∴△OAB∽△OCD∵△OCD与OAB的对应点的连线都过点O∴△OCD与△OAB的位似∴△OCD与△OAB的位似比为OC:OA=1:2.8.4.【解析】根据△ABC与△A′B′C′是位似图形,可知△ABC∽△A′B′C′,利用位似比是1:2,即可求得A′B′=4cm.解:∵△ABC与△A′B′C′是位似图形∴△ABC ∽△A ′B ′C ′∵位似比是1:2∴AB :A ′B ′=1:2∵AB =2cm ∴A ′B ′=4cm .9.(﹣2,1)或(2,﹣1)【解析】根据题意得:则点E 的对应点E ′的坐标是(﹣2,1)或(2,﹣1).10.3【解析】位似图形同时也是相似图形,位似比等于其相似比,等于其对应边的比,对应周长的比,面积比等于位似比的平方.解:由于△ABC 是由△DEF 缩小一半得到,所以△ABC 与△DEF 是位似图形,①正确;位似图形也是相似图形,②正确;将△DEF 缩小为原来的一半,得到△ABC ,所以△ABC 与△DEF 的位似比为1:2,所以其周长比也为1:2,③正确;所以其面积比为1:4,④错误.题中共有3个结论正确.11.答案见解析【解析】根据位似图形的定义及位似中心分析各图,即可得出答案.解:图(1)(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点P ,图(2)中的点A ,图(4)中的点O .12. 答案见解析【解析】(1)如下图所示;(2)与的位似比是2;ABC ∆111C B A ∆(3)如下图所示.e 【解析】(1)根据A (2,3),C (6,2),找出原点,求出点B 的坐标即可;(2)根据位似比为2,得出三角形各顶点坐标即可得出答案;(3)利用所画图形得出三角形的底与高求出即可.解:(1)B 点:(2,1)(2)(3)的面积S =16A B C '''△14. 答案见解析【解析】解:∵矩形ABCD 的周长为24∴12AB AD +=设,12AB x AD x==-则 ∴4,14AB AB BB x AD AD DD x ''''=+=+=+=- ∵矩形ABCD 与矩形AB C D '''是位似图形 ∴AB ADAB AD ='' 即12414x x x x-=+- 解得8x =∴8,4AB AD ==15.(1)作图见解析,A 1(﹣1,2);(2)作图见解析,A 2(4,2),P 2 (2a ,2b );(3)是,Q (﹣6,2).【解析】(1)如图所示,画出平移后的△A1O1B1,找出A1的坐标即可;(2)如图所示,画出位似图形△A2OB2,求出A2、P2的坐标即可;(3)根据题意得到△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形,找出Q坐标即可.解:(1)如图所示,A1(﹣1,2);(2)如图所示,A2(4,2),P2 (2a,2b);(3)如图所示,△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形.此时Q(﹣6,2).。
直角坐标系中的位似图形练习题
1.下列图形中△ABC∽△DEF,则这两个三角形不是位似图形的是( )
A. B.
C. D.
2.如图,在直角坐标系中,有两点A(4, 2),
B(3, 0),以原点O为位似中心,A'B'与AB的相
似比为1
2A'B',正确的画法是( )
A. B.
3. 如图,△AOB缩小后得△COD,△AOB与△COD的相似比是3,若点C坐标为(1, 2),则点A的坐标为( )
A.(2, 4)
B.(2, 6)
C.(3, 6)
D.(3, 4)
4. 如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2, -1),B(-2, -3),O(0, 0),
△A1B1O1的顶点坐标分别为A1(1, -1),B1 (1, -5),O1(5,-1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为( )
A.(-5, 1)
B.(-5, -1)
C.(5, -1)
D.(-1, -5)
5. 如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F 的坐标分别为(-4, 4),(2, 1),则位似中心的坐标为( )
A.(0, 3)
B.(0, 2.5)
C.(0, 2)
D.(0, 1.5)
6. 如图,平面直角坐标系中,点A(-2, 0),B(0, 1),C(-3, 2),以原点O为位似中心,把△ABC缩小为△A'B'C',且△A'B'C'与△ABC 的相似比为1:2,则点C的对应点C'的坐标为( ) A.(-1.5, 1) B.(-1.5, 1)或(1.5, -1)
C.(-6, 4)
D.(-6, 4)或(6, -4)
7.已知A(0, -1),B(1, -3),先将线段AB向左平移3个单位,再以原点O为位似中心,在第一象限内,将其扩大为原来3倍,则点A的对应点坐标为( )
A.(3, 9)
B.(6, 3)
C.(6, 9)
D.(9, 3)
8. 如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1, 0),则E点的坐标为( )
A.(2, 0)
B.(1, 1)
C.(2, 2)
D.(2, 2)
9.在直角坐标系中,已知点A(6, -3),原点O
为位似中心,相似比为1
3,把线段OA缩小为
OA',则点A'的坐标为( )
A.(2, -1)或(-2, -1)
B.(-2, 1)或(2, 1)
C.(2, 1)或(-2, -1)
10.如图,线段AB两个端点的坐标分别为
A(4, 4),B(6, 2),以原点O为位似中心,在第一
象限内将线段AB缩小为原来的1
2后得到线段
CD,则端点C和D的坐标分别为( )
A.(2, 2),(3, 2)
B.(2, 4),(3, 1)
C.(2, 2),(3, 1)
D.(3, 1),(2, 2)
11. 如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标为( )
A.(1, 0)
B.(0, 1)
C.(-1, 0)
D.(0, -1)
12. 如图,已知△OAB与△OA'B'是相似比为1:2的位似图形,点O为位似中心,若△OAB 内一点P(x, y)与△OA'B'内一点P'是一对对应点,则点P'的坐标为( )
A.(-x, -y)
B.(-2x, -2y)
C.(-2x, 2y)
D.(2x, -2y)
(12)(13)
13.如果两个几何图形存在一一对应,且每一对
对应点P和P'都与一定点O共线,同时OP OP'
=k
(k>0是常数),那么称这两个图形位似点O叫做位似中心,k是位似比,如图,△AOB三个顶点的坐标分别为A(8.0),O(0.0),B(8.-6),点M为OB的中点,以点O为位似中心,把
△AOB缩小为原来的1
2,得到的△A'O'B',以
点M'为O'B'的中点,则MM'的长为________.
14.△ABC三个顶点的坐标分别为A(2, 2),
B(4, 2),C(6, 4).以原点O为位似中心,将
△ABC缩小得到△DEF,其中点D与A对应,点E与B对应,△DEF与△ABC对应边的比为1:2,这时点F的坐标是_______.
15.在平面直角坐标系中,点A的坐标为(1,2),将点A沿x轴的正方向平移m 个单位后,得到的对应点的坐标为(4,2),则n=________.16.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A'B'O'是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为________.
(17)
17. 如图,正方形ABCD的顶点A,B的坐标分别为(-2, 0),(-1, 0).顶点C,D在第二象限内.以原点O为位似中心,将正方形ABCD 放大为正方形A'B'C'D',若点B'的坐标为(2, 0),则点D'的坐标为________.
18. 如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1, 1),点C的坐标是(4, 2),则它们的位似中心的坐标是________.
(18)。