3,生存年金
- 格式:ppt
- 大小:939.00 KB
- 文档页数:35
第一章精算:以概率论和数理统计为基础,与人口、经济、金融等学科相结合,对各种经济活动中未来的风险进行分析、评估和管理,是现代保险、金融、投资实现稳健经营的基础。
大数法则:又称“大数定律”或“平均法则”。
是指大量的、在一定条件下重复出现的随机事件将呈现出一定的规律性和稳定性。
收支平衡原则:保险期内纯保费收入的现金价值与支出保险金的现金价值相等。
具体有三种平衡等式,即期初的现值相等、期末的终值相等、期中的当前值相等。
第二章资金时间价值:又称货币时间价值,是指在排除通货膨胀和风险性因素之后,资金在周转使用过程中由于时间因素而形成的差额价值。
累积函数:期初投资额即本金为1单位,在纯利息的效应下在时刻t 时的累积额,用a(t) 表示,t≥0。
总额函数:期初投资额即本金为k单位,在纯利息的效应下在时刻t 时的累积额,用A(t) 表示,t≥0。
实际利率:(1)表示某一时期开始时投资1单位本金,在该时期末所获利息的数额。
(2)表示某时期内得到的利息金额与此时期开始时投资的本金金额之比。
实际贴现率:是在度量期内获得的利息与期末资金的比值,常用d表示。
年金:每隔相等的时间(月、季、年等)收付一次的系列款项。
年金的分类:按支付期限:定期年金、永续年金按支付开始时期:即期年金、延期年金按支付日期:期首付年金、期末付年金生命表:是反映在封闭人口条件下,一批人从出生后以怎样的死亡概率陆续死亡的全部过程的一种统计表,又称死亡表、寿命表。
多减因模型:是研究封闭人口条件下,同一批人受两个或两个以上减因影响陆续减少的数学模型,通常以多减因表的形式表示。
第三章生存年金:以被保险人生存为条件,间隔相等的时期(年、半年、季、月)支付一次保险金的保险类型。
生存年金与确定性年金的关系:(1)相同点都是间隔相等时间收付一次(2)不同点确定性年金的支付次数确定生存年金的支付次数不确定(以被保险人生存为条件)生存年金的分类:按支付期限:定期生存年金、终身生存年金按支付开始时期:即期生存年金、延期生存年金按支付日期:期首付生存年金、期末付生存年金纯生存保险:以被保险人生存为给付条件的保险,即在约定的保险期满或达到某一年龄时,如果被保险人存活将得到一次性的保险金给付。
河南城建学院教师教案(2014~2015学年第1学期)目录课程简介2第1章利息的基本概念3第2章确定型年金8第3章生命表基础14第4章人寿保险的精算现值17第5章年金的精算现值20第6章均衡纯保费23第7章责任准备金25第8章保单现金价值与红利27第9章资产份额定价法28课程简介21(1)(1)n n v i i -+=++++n n a s ----所有付款在时刻所有付款在时刻1111(1)(1)(1)114.(1)1(1)1n n n n n n nn nn n n n n n n n a v v s i a i s da s a a i a a s s i s s ---++==++++•+==+=+=+=+=-=1+【公式解读】公式1与期末付年金现值公式相比较,差别在于分母不同,在期末付年金公式终,i 是利息在每期期初支付的度量标准【例题讲解】P23 例n mn m n ma v a a a +==-在最后一期付款后某时刻的年金积累值)(1))(1)m n m n m mn m n mn s i s s n s i s s +++=+=-+=+=-付款期间某时刻的年金当前值)次付款时所有付款的当前值(1)n m n m n m m n m n n m n mv s s a a i v s s a ----==++==+1n k k kv v+=2(1)1(1n ki -+++=+其他同上。
(1)11nk n kka va --+=-(1(1)knn k ks s i a a +++=%,甲于每季度初在银行存款元,共存3年,以后计算甲在第5年末的存款积累值。
计息频率低于付款频率的年金 1mn mv-++(1)ni i ++=()(1m nad -=()(1m ni sd +=某人在银行采取零存整取的方式存款,拟在%,计算该储户到时刻支取的存款本利和。
()(),,,m m n n n na a a a 大小关系年1月1日需要50000年的年金,每次领取款项为每年初存入银行K 元,共25年,存入款项时每年计息领取年金时,每年计息2次的年名义利率为某保险受益人以年金形式从保险公司分期领取末领取一次,共领取25年,年利率为ni )1+1)0,1,2k =((x s x s x μ'=-11,0,1,2,1nK n---=---其他x A 1:x n iA δ11::x n x n A A +让学生掌握一般保险金给付额变化情况下的计算。
第四章 生存年金生存年金就是以约定的人仍然生存作为给付条件的年金,它与确定年金相对;前者除了考虑利率因素外,还必须考虑生存概率,而后者与生死无关,只考虑利息率的作用,给付的数额与给付的次数事先确定。
生存年金在整个人寿保险、社会养老保险中占有极其重要的地位,如投保人(或被保险人)分期交纳的保险费形成一种生存年金,劳动者从退休之日起每月或每年领取的养老金也形成一种生存年金。
生存年金有如下一些分类方式。
按给付期限是否有具体的规定,可分为:按是否期初期末给付,可分为:按各次给付数额是否相等,可分为:按签约后是否立即开始给付期,可分为:按与约定生死相关的人的数目多少,可分为:按给付频率来划分,可分为多年给付一次的生存年金、每年给付一次的生存年金、每年给付多次的生存年金、连续给付的生存年金。
前三者属于离散型生存年金,最后一种年金又称为连续生存年金。
连续生存年金完全按生存时间长短进行给付,而离散型生存年金,无论期初给付还是期末给付都存在一定的局限性,需要进行调整,从而演变为比例期初生存年金与完全期末生存年金,留在最后一节讨论。
本章主要以这种划分作为其逻辑体系加以研究。
本章的主要内容就是求生存年金的精算现值与精算终值。
与生存年金相关的概念就是年金保险。
所谓年金保险就是以生存年金方式提供保险金的保险。
显然,年金保险的实质就是生存年金,因而本章关于生存年金的结论,适合于年金保险。
第一节 多年给付一次的生存年金本节在考虑多年给付一次的年金时,为了简化起见,仅考虑n 年期满生存时给付一次的精算现值,那么多年给付一次的年金的精算现值也就是各次给付的精算现值之和,这一定义也适合于更一般的生存年金。
一、投保人缴纳的趸缴纯保费设n x E 为x 岁的人购买n 年期保额为1的纯生存保险所缴纳的趸缴纯保险费。
运用团体法,假设依据生命表活过x 岁的x l 人都参加了这种纯生存保险,那么依收支平衡原则可得1n x n x x n l E l v +=⋅⋅ (4.1.1)或(1)1n x n x x n l E i l ++=⋅ (4.1.2) 解之得nn x n x E v p ==x nxD D + (4.1.3)二、保险人给付保险金现值的期望值设1:x nY 表示保险人对参加保额为1的n 年期纯生存保险所给付的现值,显然它是一个随机变量,其分布律为1:()n n x x nP Y v p == 1:(0)n x x nP Y q == 由此可得1:()nn x x nE Y v p ==n x E 上式表示,保险人平均给付的现值等于保险人收支的保险费,这也体现保险双方权利义务对等与公平性。
《保险精算学》笔记:生存年金第一节生存年金简介一、生存年金的定义和分类1、生存年金的定义:以被保险人存活为条件,间隔相等的时期(年、半年、季、月)支付一次保险金的保险类型。
2、生存年金的分类(1)延付年金、初付年金(2)连续年金、离散年金(3)定期年金、终身年金(4)非延期年金、延期年金(5)被保险人支付的保费年金、保险人支付的保险赔付年金3、生存年金与确定性年金的关系(1)确定性年金:支付期数确定的年金(利息理论中所讲的年金)。
(2)生存年金与确定性年金的联系:都是每隔一段时间的系列付款(3)生存年金与确定性年金的区别:确定性年金的支付期数是确定的,而生存年金的支付期数是不确定的(以被保险人生存为条件)二、生存年金的用途1、被保险人保费交付常使用生存年金的方式2、某些场合保险人理赔时支付的保险金采用生存年金的方式,特别在:养老保险、残疾保险、抚恤保险、失业保险等场合。
第二节与生存相关联的一次性支付一、年期生存保险定义现龄岁的人在投保年后仍然存活,可以在第年末获得生存赔付的保险称为年期生存保险。
这就是我们在第三章讲到的纯生存保险。
单位元数的年期生存保险的趸缴纯保费为。
在生存年金研究中习惯用表示该保险的精算现值二、相关公式及意义理解:一、连续生存年金简介1、定义:在保障时期内,以被保险人生存为条件,连续支付年金的保险。
2、分类:终身(永久)连续生存年金、定期连续生存年金延期连续生存年金、非延期连续生存年金3、连续生存年金精算现值估计方法u 当期支付技巧:考虑未来连续支付的现时值之和u 综合支付技巧:考虑年金在因死亡或到期而结束时的总值。
二、终身连续生存年金精算现值的估计1、综合支付技巧步骤一:计算到死亡发生时间T为止的所有已支付的年金的现值之和步骤二:计算这个年金现值关于时间积分所得的年金期望值,即终身连续生存年金精算现值,记作:2、当期支付技巧步骤一:计算在时刻所支付的当期年金的现值步骤二:计算该当期年金现值按照可能支付的时间积分,得到期望年金现值3、相关公式1、综合支付技巧2、当期支付技巧3、相关公式四、延期连续生存年金精算现值的估计1、延期年终身生存年金:当活到岁之后,每年可获1单位元数的连续支付的延期年金,其精算现值记作也等价于2、延期年年定期生存年金:当在岁与岁之间存活时,每年可获1单位元数的连续支付的延期年金,其精算现值记作也等价于第四节离散生存年金一、离散生存年金简介1、定义:在保障时期内,以被保险人生存为条件,每隔一段时间支付一次年金的保险。