几何组成分析习题
- 格式:doc
- 大小:118.00 KB
- 文档页数:2
7 .图题1- 3 (a)所示体系,几何组成分析试题一、是非判断:1.在一个平面体系上增加二元体不会改变体系的计算自由度。
( )2.若平面体系的计算自山度W= 0,则该体系为无多余约束的几何不变体系或瞬变体系,而不可能为常变体系。
( )3.平面较接杆件体系的计算自由度W^2j-b-r,式中/表不体系中的单较的个数。
( )4.若平面体系的计算自由度W<0,则该体系不可能是静定结构。
( )5 .图题l-l(a)所示体系去掉二元体AB、AC后,成为图(b)的几何可变体系,故原体图(a)系为几何可变体系。
( )6 .图题l-2(a)所示体系依次去掉二元体AB、AC及BD、BE后,成为图(b)所示体系,故原体系是无多余约束的几何不变体系。
( )题1-2图题1-3图8.图题1-4 (a)所示体系,依结点1、2、3、4的顺序去掉4个二元体后,就只剩下地基,故原体系是无多余约束的几何不变体系。
( )二、填空1.如图2-1所示体系为具有 ______________ 个多余约束的几何不变体系。
2.如图2-2所示体系为______________ 体系。
3.如图2-3所示体系为______________ 体系。
III题2-3题2-4题2-5题2-6Az——C)——R4 .如图2-4所示刚片I 、II 、III 由较力及链杆1、2、3、4连接,若较力与及链杆1共线,则所 组成体系为 _____________ 体系;若較〃与及链杆1不共线,则所组成体系为 ________________ 体系。
5 .如图2-5所示体系为 __________ 体系。
------------ 9Q O Q O题2-7图6 .如图2-6所示体系为 __________ 体系。
7 .如图2-7所示体系为 __________ 体系。
8 .如图2-8所示体系为 __________ 体系。
三〜五、试对图三〜五所示体系进行几何组成分析。
一、对图示体系进行几何组成分析。
(10分)解:折杆ABC 、CDE 与BD 形成刚片I ,为几何不变体系且无多余约束。
(5分)刚片I 与地面由4链杆相连,整个结构为几何不变且有1个多余约束。
(5分)二、计算图示静定桁架的支座反力及1、2杆的轴力。
(14分)解:求支座反力)(2),(6),(2↑=↑=←=kN R kN Y kN X B A A (6分)求1、2杆的轴力截面法: )(520251011拉kN N N Y ==+⨯-=∑ (4分) 取E 结点: )(240214022压kN N N Y -==⨯--=∑(4分)三、P = 1在图示静定多跨梁ABCD 上移动。
(1)作截面E 的剪力影响线;(2)画出使Q E 达最大值和最小值时可动均布荷载的最不利布置;(3)当可动均布荷载q = 20 kN/m 时,求Q Emax 值。
(16分)(1) Q E 影响线见图(5分)(2)Q Emax 的最不利位置 (3分)Q Emin 的最不利位置 (3分)(3)kN q Q E 38)5332152521(20max =⨯⨯+⨯⨯⨯=∑=+ω(5分)四、用力法计算图示刚架,画M 图。
EI 为常数(20分)解:1、一次超静定结构,基本体系和基本未知量,如图 (2分)A B CDE 0.4 0.6+ -+0.4C ED2、列力法方程 01111=∆+P X δ (1分)3、作图和P M M ___1 (6分) 4、计算系数、自由项EI 14411=δ (3分) EIP 8101-=∆ (3分)5、解方程 kN X 625.51= (1分)6、作M 图 (4分)五、用位移法计算图示刚架,并作M 图。
各杆EI 为常数。
(20分)解:1、以刚结点角位移为基本未知量,得基本体系 (2分);2、绘1M P M 图(图略) (6分)3、列位移法典型方程: 01111=+P F z k (2分)(4分)图(kNm )33.75六、用力矩分配法绘制图示连续梁的弯矩图。
一、对图示体系进行几何组成分析。
(10分)解:折杆ABC 、CDE 与BD 形成刚片I ,为几何不变体系且无多余约束。
(5分)刚片I 与地面由4链杆相连,整个结构为几何不变且有1个多余约束。
(5分)二、计算图示静定桁架的支座反力及1、2杆的轴力。
(14分)解:求支座反力)(2),(6),(2↑=↑=←=kN R kN Y kN X B A A (6分)求1、2杆的轴力截面法: )(52025111拉kN N N Y ==+⨯-=∑ (4分) 取E 结点: )(240214022压kN N N Y -==⨯--=∑(4分)三、P = 1在图示静定多跨梁ABCD 上移动。
(1)作截面E 的剪力影响线;(2)画出使Q E 达最大值和最小值时可动均布荷载的最不利布置;(3)当可动均布荷载q = 20 kN/m 时,求Q Emax 值。
(16分)(1) Q E 影响线见图(5分)(2)Q Emax 的最不利位置 (3分)Q Emin 的最不利位置 (3分)(3)kN q Q E 38)5332152521(20max =⨯⨯+⨯⨯⨯=∑=+ω(5分) 四、用力法计算图示刚架,画M 图。
EI 为常数(20分)解:1、一次超静定结构,基本体系和基本未知量,如图 (2分)A B C D E0.40.6 +-+0.4 C C D2、列力法方程 01111=∆+P X δ (1分)3、作图和P M M ___1 (6分)4、计算系数、自由项 EI 14411=δ (3分) EIP 8101-=∆ (3分) 5、解方程 kN X 625.51= (1分)6、作M 图 (4分)五、用位移法计算图示刚架,并作M 图。
各杆EI 为常数。
(20分)解:1、以刚结点角位移为基本未知量,得基本体系 (2分);2、绘1M P M 图(图略) (6分)3、列位移法典型方程: 01111=+P F z k (2分)(4分)图(kNm )33.75六、用力矩分配法绘制图示连续梁的弯矩图。
[例题2-1-1]计算图示体系的自由度。
,可变体系.(a) (b)解:(a)几何不变体系,无多余约束(b )几何可变体系[例题2-1—2]计算图示体系的自由度。
桁架几何不变体系,有多余约束. 解:几何不变体系,有两个多余约束[例题2-1-3]计算图示体系的自由度。
桁架自由体。
解:几何不变体系,无多余约束[例题2-1—4]计算图示体系的自由度。
,几何可变体系。
解:几何可变体系[例题2-1—5]计算图示体系的自由度。
刚架自由体。
解:几何不变体系,有6个多余约束[例题2-2—1]对图示体系进行几何组成分析。
两刚片规则.几何不变体系,且无多余约束[例题2-2-2]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束[例题2-2-3]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,且无多余约束[例题2-2—4]对图示体系进行几何组成分析。
两刚片规则。
几何不变体系,有一个多余约束[例题2—2—5]对图示体系进行几何组成分析.二元体规则.几何不变体系,且无多余约束[例题2-2—6]对图示体系进行几何组成分析.两刚片规则,三刚片规则.几何不变体系,且无多余约束[例题2-2-7]对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束[例题2-2-8]对图示体系进行几何组成分析.三刚片规则.几何不变体系,且无多余约束[例题2-3-1]对图示体系进行几何组成分析.两刚片规则。
几何瞬变体系[例题2—3—2]对图示体系进行几何组成分析。
两刚片规则。
几何瞬变体系[例题2-3-3]对图示体系进行几何组成分析。
三刚片规则。
几何瞬变体系[例题2—3-4]对图示体系进行几何组成分析。
三刚片规则。
几何不变体系,且无多余约束[例题2-3-5]对图示体系进行几何组成分析.三刚片规则.几何不变体系,且无多余约束[例题2-3—6]对图示体系进行几何组成分析。
二元体规则,三刚片规则.几何瞬变体系[例题2-3-7]对图示体系进行几何组成分析。
几何组成分析
4.图示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。
( )
5.图示体系为几何不变有多余约束。
( )
6.图示体系为几何瞬变。
( )
8.几何可变体系在任何荷载作用下都不能平衡。
( )
9.三个刚片由三个铰相联的体系一定是静定结构。
( )
10.无多余约束的体系一定是静定结构。
( )
二、选择题
1.三个刚片用三个铰两两相互联结而成的体系是:
a.几何不变;
b.几何常变;
c.几何瞬变;
d.几何不变几何常变或几何瞬变。
( )
2.联结三个刚片的铰结点,相当的约束个数为:
a.2个;
b.3个;
c.4个;
d.5个。
( )
3.两个刚片,用三根链杆联结而成的体系是:
a.几何常变;
b.几何不变;
c.几何瞬变;
d.几何不变或几何常变或几何瞬变。
( )
4.图示体系是:
a.几何瞬变有多余约束;
b.几何不变;
c.几何常变;
d.几何瞬变无多余约束。
( )。