MATLAB线性系统的根轨迹实验
- 格式:doc
- 大小:591.00 KB
- 文档页数:11
利用MATLAB进行根轨迹分析根轨迹分析是一种用于研究系统稳定性和动态特性的方法,通过研究系统的传递函数来绘制系统极点随参数变化的轨迹。
MATLAB提供了强大的工具和函数来进行根轨迹分析。
根轨迹是由系统的极点随参数变化所形成的轨迹,它可以反映系统的稳定性、阻尼比、上升时间、超调量等动态性能指标。
根轨迹的绘制通常包括以下步骤:1.定义系统传递函数:首先,需要根据具体的控制系统问题定义系统的传递函数。
传递函数是描述输入与输出间关系的数学模型,通常用分子多项式和分母多项式的比值来表示。
2. 极点位置确定:根据系统传递函数的分母多项式,可以求解系统的极点位置。
MATLAB提供了roots函数来计算多项式的根。
3. 绘制根轨迹:通过参数变化,将系统的极点位置代入传递函数的分子多项式中,可以计算得出系统的零点。
然后,使用MATLAB的plot函数将所有极点和零点绘制在复平面上。
4.判断稳定性:通过观察根轨迹的形状,可以判断系统的稳定性。
如果所有极点都位于左半平面,系统是稳定的。
如果存在极点位于右半平面,系统是不稳定的。
5.分析动态特性:根轨迹的形状可以提供许多关于系统动态特性的信息。
例如,阻尼比可以通过根轨迹上极点到原点的距离和纵坐标之比来估计;超调量可以通过根轨迹的形状和最大振幅来估计。
MATLAB提供了许多用于根轨迹分析的函数和工具箱,包括rlocus函数、nyquist函数和bode函数等。
这些函数可以方便地绘制根轨迹、Nyquist图和Bode图,从而帮助工程师分析系统稳定性以及设计和调整控制器。
根轨迹分析在控制系统设计和调优中具有重要作用。
通过根轨迹的绘制和分析,工程师可以深入了解控制系统的动态特性,并根据需要调整系统参数来达到设计要求。
同时,根轨迹分析也是控制系统教学和研究中常用的方法和工具。
总之,MATLAB是进行根轨迹分析的强大工具,通过绘制根轨迹和分析根轨迹的形状和特性,可以帮助工程师深入了解控制系统的稳定性和动态特性,从而有效地设计和调整控制器。
实验五利用MATLAB绘制系统根轨迹一、实验目的(1)熟练掌握使用MA TLAB绘制控制系统零极点图和根轨迹图的方法;(2)熟练使用根轨迹设计工具SISO;(2)学会分析控制系统根轨迹的一般规律;(3)利用根轨迹图进行系统性能分析;(4)研究闭环零、极点对系统性能的影响。
二、实验原理及内容1、根轨迹与稳定性当系统开环增益从变化时,若根轨迹不会越过虚轴进入s右半平面,那么系统对所有的K值都是稳定的;若根轨迹越过虚轴进入s右半平面,那么根轨迹与虚轴交点处的K值,就是临界开环增益。
应用根轨迹法,可以迅速确定系统在某一开环增益或某一参数下的闭环零、极点位置,从而得到相应的闭环传递函数。
2、根轨迹与系统性能的定性分析1)稳定性。
如果闭环极点全部位于s左半平面,则系统一定是稳定的,即稳定性只与闭环极点的位置有关,而与闭环零点位置无关。
2)运动形式。
如果闭环系统无零点,且闭环极点为实数极点,则时间响应一定是单调的;如果闭环极点均为复数极点,则时间响应一般是振荡的。
3)超调量。
超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零、极点接近坐标原点的程度有关。
4)调节时间。
调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。
5)实数零、极点影响。
零点减小闭环系统的阻尼,从而使系统的峰值时间提前,超调量增大;极点增大闭环系统的阻尼,使系统的峰值时间滞后,超调量减小。
而且这种影响将其接近坐标原点的程度而加强。
【自我实践5-1】在实验内容(2)中控制系统的根轨迹上分区段取点,构造闭环系统传递函数,分别绘制其对应系统的阶跃响应曲线,并比较分析。
1:阻尼比=0.00196,k=5.942:阻尼比=0.246,k=2.163:阻尼比=0.669 k=0.6694:阻尼比=1.0,k=0,3855:阻尼比=1.2(无此阻尼,取-0.2),k=24.5将数据填入实验数据记录表中。
实验六:应用MATLAB 绘制根轨迹图时间:第 周 星期 第 节课2013年 月 日计算机与电气自动化学院设置一、实验目的1、 通过实验了解Matlab 的编程基本方法;2、 通过实验了解Matlab 绘制根轨迹图的方法; 二、 实验原理1、 传递函数的根轨迹图定义:设方程:0)(111*111=+++++++++----m m m m n n n nb s b s b s K a s a s a S,式中m m n n b b b a a a ,,,,,,11;11-- ,为实常数,+∞<<-∞∈**K K ,为可变参数 设n n s s s ,,,11- 为该方程的n 个根,每选择一个K*值,就有一组根与之对应,在自变量s 平面上就会有一组极点与之对应,换一个K*值,会有一组新的极点与之对应,当K*在实数范围内连续变化时,对应的n 个根就会在s 平面内形成n 条轨迹线,这些轨迹线就称为该方程的根轨迹。
2、 传递函数的根轨迹图意义:已知系统的开环传递函数零、极点分布的基础上,研究某—个和某些参数的变化对系统闭环极点分布的影响的一种图解方法。
由于根轨迹图直观、完整地反映系统特征方程的根在S 平面上分布的大致情况,通过一些简单的作图和计算,就可以看到系统参数的变化对系统闭环极点的影响趋势。
这对分析研究控制系统的性能和提出改善系统性能的合理途径都具有重要意义。
3、 传递函数的根轨迹图绘制方法。
(1):rlocus (g )说明:已知系统开环传递函数为g ,使用语句rlocus (g )直接绘制系统根轨迹,可以 看出根轨迹的不同分支(各个分支以不同的颜色表示)。
(2):sisotool说明:已知系统开环传递函数为g ,同时打开根轨迹和波德图编辑窗口。
可以通过增 加零极点的方法改变根轨迹的形状,进而分析系统的性能。
(3):rltool说明:已知系统开环传递函数为g ,打开绘制根轨迹图编辑窗口。
线性系统的根轨迹法实验报告实验二线性系统的根轨迹法一,实验目的1,掌握matlab绘制根轨迹的方法。
2,观察k值变化对系统稳定性的影响。
3,掌握系统临界稳定情况下k值得求取。
4,了解增设零点对系统稳定的影响以及改善系统稳定性的方法。
二,实验原理根轨迹的概念:所谓根轨迹就是当开环系统某一参数从零变到无穷大时,闭环系统特征方程式的根在s平面上变化的轨迹。
根轨迹与系统性能:有了根轨迹就可以分析系统的各种性能了,稳定性的判定,当开环增益从零变到无穷大时,根轨迹不会越过虚轴进入s平面的右半平面,此时K的范围为系统稳定的范围,根轨迹与虚轴的交点处的K值,为系统的临界开环增益,开根轨迹进入s平面的右半平面时所对应的K值为系统不稳定的情况。
三,实验内容A、设单位负反馈系统的开环传递函数为G(s)=K/(s*(s+1)(s+5)) (1) 绘制系统的根轨迹,并将手工绘制结果与实验绘制结果比较; (2) 从实验结果上观察系统稳定的K 值范围;(3) 用simulink 环境观察系统临界稳定时的单位阶跃响应分析:绘制根轨迹的matlab文本为clfnum=1;den=conv([1 1 0],[1 5]); rlocus(num,den) %绘制系统根轨迹1,得到如图的根轨迹图:2,用鼠标点击根轨迹与虚轴处的交点可得到临界稳定的开环增益K=30,所以系统稳定的K值范围为0―30。
3,在simulink环境下按下图连接电路:取增益为30的时候在示波器下观察单位节约响应,输出波形为:由图可以看出单位阶跃响应的输出为等幅的震荡输出,所以此时系统为临界稳定状态。
当改变开环增益为50和20时观察示波器,得到输出波形分别为:由图可知当增益K为50时输出为不稳定的震荡输出,此时系统不稳定,当增益K为20时输出的波形震荡越来越缓慢,最后趋于稳定,所以此时的系统是稳定的。
B,设单位反馈控制系统的开环传递函数为G(S)=K(s+3)/s(s+1)(s+2)(1) 仿照上题绘制系统的根轨迹,并判断系统的稳定性; 参照第一题得到matlab命令文本为:clfnum=1;den=conv([1 1 0],[1 2]); rlocus(num,den) %绘制系统根轨迹得到如图的根轨迹图:1,由图可知根轨迹没有进入s平面右半平面,所以系统在K=0到K=?都是稳定的。
《自动控制原理》课程实验报告实验名称系统根轨迹分析专业班级 ********************学号姓名**指导教师李离学院名称电气信息学院2012 年 12 月 15 日一、实验目的1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;二、实验设备1、硬件:个人计算机2、软件:MATLAB 仿真软件(版本6.5或以上)三、实验内容和步骤 1.根轨迹的绘制利用Matlab 绘制跟轨迹的步骤如下:1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0, 其中,K 为我们所关心的参数。
2) 调用函数 r locus 生成根轨迹。
关于函数 rlocus 的说明见图 3.1。
不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。
图3.1 函数rlocus 的调用例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。
图3.2 闭环系统一图3.3 闭环系统一的根轨迹及其绘制程序图 3.4 函数 rlocfind 的使用方法注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。
当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数无零点时,[zero]写成空集[]。
对于图 3.2 所示系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。
|实验四 用MATLAB 绘制根轨迹图 (The Root Locus Using MATLAB )一、绘制系统的根轨迹在绘制根轨迹之前,先把系统的特征方程整理成标准根轨迹方程r num(s)1+G(s)H(s)=1+K =0den(s)⋅其中:rK为根轨迹增益;num(s)为系统开环传递函数的分子多项式;den(s)为系统开环传递函数的分母多项式。
绘制根轨迹的调用格式有以下三:rlocus(num,den) 开环增益k 的范围自动设定; rlocus(num,den,k) 开环增益k 的范围人工设定; [K,p]=rlocfind(G ) 确定所选定处的增益和对应的特征根。
例4.1 已知某系统的开环传递函数为s s s s K s r 424)(23+++⋅=G试绘制该系统的根轨迹。
解: 在Matlab 命令窗口键入 num=[1 4];den=[1 2 4 0]; rlocus(num,den)可得如图4-1的结果。
-5-4-3-2-11-10-8-6-4-20246810Real AxisI m a g i n a r y A x i sRoot Locus图4-1由于采用rlocus()函数绘制根轨迹时,不同的根轨迹分支之间只区分颜色而不区分线形,所以打印时是不容易分辨各个分支的,需要在运行Matlab 程序时注意观察曲线的颜色。
■例4-2 若要求例4-1中的r K 在1到10之间变化,绘制相应的根轨迹。
解 在MATLAB 命令窗口键入 num=[1 4];den=[1 2 4 0];k=[1:0.5:10]; rlocus(num,den,k)可得如图4-2.的结果。
-4.5-4-3.5-3-2.5-2-1.5-1-0.500.5Root LocusReal AxisI m a g i n a r y A x i s图4-2例4-3 设系统的开环传递函数为)22)(3(()(2+++=s s s K s s rs H G )试绘制其闭环系统的根轨迹图并在图上找出几点的相关数据。
利用Matlab绘制系统的根轨迹本章前面的内容介绍了控制系统根轨迹的绘制以及利用系统大致的根轨迹图分析系统性能的方法,若要由根轨迹获得系统在某一特定参数下准确的性能指标或者准确的闭环极点,需要依据幅值条件精确地作图。
如果利用MATLAB工具箱中函数,则可方便、准确地作出根轨迹图,并利用图对系统进行分析。
MATLAB工具箱中,求系统根轨迹的几个常用函数有rlocus, rlocfind, sgrid,下面通过具体的例子来说明这些函数的应用。
例4-13 控制系统的开环传递函数为G(s)H(s)=绘制系统的根轨迹图。
解利用函数rlocus函数可直接作出系统的根轨迹图,程序如下:% example4-13 %num=[1,5];dun=[1,6,11,6,0]; rlocus(num,dun)执行该程序后,可得到如图4-20所示的根轨迹。
图4-20 例4-13题根轨迹图利用函数rolcus可画出系统的根轨迹图后,可用rlocfind函数在根轨迹上选择任意极点,得到相应的开环增益和其它闭环极点。
例4-14 控制系统的开环传递函数为绘制系统的根轨迹图,并确定根轨迹的分离点及相应的开环增益。
解将开环传递函数写为Matlab程序如下:% example4-14 %num=[1];den=[0.0002,0.03,1,0]; rlocus(num,den)title(‘Root Locus’) [k,p]=rlocfind(num,den) 程序执行过程中,先绘出系统的根轨迹,并在图形窗口中出现十字光标,提示用户在根轨迹上选择一点,这时,将十字光标移到所选择的地方,可得到该处对应的系统开环增益及其它闭环极点。
此例中,将十字光标移至根轨迹的分离点处,可得到k =9.6115p =-107.7277-21.9341-20.3383 若光标能准确定位在分离点处,则应有两个重极点,即相等。
程序执行后,得到的根轨迹图如图4-21所示。
第4章 利用MATLAB 绘制系统根轨迹一、 利用MATLAB 绘制系统根轨迹相关知识假设闭环系统中的开环传递函数可以表示为:)()())(()())(()(021********s KG p s p s p s z s z s z s K den numK a s a s a s b b s b s K s G n m nn n n m m m m k =+⋅⋅⋅+++⋅⋅⋅++==++⋅⋅⋅++++⋅⋅⋅++=---- 则闭环特征方程为: 01=+dennumK特征方程的根随参数K 的变化而变化,即为闭环根轨迹。
控制系统工具箱中提供了rlocus()函数,可以用来绘制给定系统的根轨迹,它的调用格式有以下几种:rlocus(num ,den) rlocus(num ,den ,K) 或者 rlocus(G) rlocus(G ,K)以上给定命令可以在屏幕上画出根轨迹图,其中G 为开环系统G 0(s)的对象模型,K 为用户自己选择的增益向量。
如果用户不给出K 向量,则该命令函数会自动选择K 向量。
如果在函数调用中需要返回参数,则调用格式将引入左端变量。
如[R ,K]=rlocus(G)此时屏幕上不显示图形,而生成变量R 和K 。
R 为根轨迹各分支线上的点构成的复数矩阵,K 向量的每一个元素对应于R 矩阵中的一行。
若需要画出根轨迹,则需要采用以下命令:plot(R ,¹¹)plot()函数里引号内的部分用于选择所绘制曲线的类型,详细内容见表1。
控制系统工具箱中还有一个rlocfind()函数,该函数允许用户求取根轨迹上指定点处的开环增益值,并将该增益下所有的闭环极点显示出来。
这个函数的调用格式为:[K ,P]=rlocfind(G)这个函数运行后,图形窗口中会出现要求用户使用鼠标定位的提示,用户可以用鼠标左键点击所关心的根轨迹上的点。
这样将返回一个K 变量,该变量为所选择点对应的开环增益,同时返回的P 变量则为该增益下所有的闭环极点位置。
MATLAB的根轨迹仿真实验设计思路及作用分析控制系统的根轨迹分析与设计是自动控制理论中非常重要的一种方法,也是在工程实际中得到广泛应用的一种图解方法,在自动控制原理课程教学中占有重要地位。
传统的根轨迹实验需要手工绘制系统的根轨迹图以及大量的计算,效率低,且很难得到精确的结果[1];而MATLAB中提供了绘制和分析根轨迹的函数,可以非常方便、直观的得到系统的根轨迹,因此,我们将MATLAB引入到自动控制原理实验教学中,设计基于MATLAB的根轨迹仿真实验。
1 根轨迹仿真实验设计根轨迹仿真实验不但要求学生掌握绘制根轨迹的方法,而且能够根据根轨迹图分析系统的性能,更进一步地,当系统性能不满足要求时,能够正确设计校正装置,改善系统的性能。
因此,仿真实验由绘制根轨迹、性能分析和系统校正三部分组成。
(1)绘制根轨迹。
MATLAB中提供了rlocus()函数,可直接用于控制系统根轨迹的绘制,调用格式rlocus(num,den),其中num为系统的开环传递函数分子多项式的系数向量,den为系统的开环传递函数分母多项式的系数向量,多项式各项按s的降幂排列。
在绘制的根轨迹图上,用鼠标左键单击曲线上的任一点,将显示关于这个点的有关信息,包括该点的增益值,对应的系统特征根的值和可能的闭环系统阻尼比和超调量等[2]。
在MATLAB中,提供了rlocfind()函数用于获取选定点对应的闭环极点和增益K的值。
该函数的调用格式为:[k,r]=rlocfind (num,den)。
根轨迹绘制完成,执行rlocfind命令时,出现“Select a point in the graphics window”的提示语,即要求在根轨迹图上选定一个点,根轨迹图上出现“+”标记,将鼠标移至根轨迹图上的选定位置,然后单击左键确定,就得到了选定点的闭环根r和增益K的返回变量值[3]。
(2)性能分析。
系统的性能分析主要是稳定性、动态性能和稳态误差三个方面。
实验三利用MATLAB进行根轨迹分析实验三利用MATLAB进行根轨迹分析一、实验目的1、熟悉MATLAB用于控制系统中的一些基本编程语句和格式。
2、利用MATLAB语句绘制系统的根轨迹。
3、掌握用根轨迹分析系统性能的图解方法。
二、实验原理1、绘制系统的根轨迹rlocus()2、确定闭环根位置对应增益值K的函数rlocfind()该函数的调用格式为:[k,r]=rlocfind(num,den)三、实验内容请绘制下面系统的根轨迹曲线①、G(s)=k/s*(s^2+2*s+2)*(s^2+6*s+13)K:从0到无穷大时的根轨迹,x轴、y轴和标题。
②、G(s)=k*(s+12)/(s+1)*(s^2+12*s+100)*(s+10)K:从0到1000时的根轨迹曲线。
③、G(s)=k*(0.05+1)/s*(0.0714+1)*(0.012*s^2+0.1*s+1) K:从0到无穷大时的根轨迹曲线,图形窗口任选一点,确定系统稳定性。
程序:①num=[1];>> den=conv(conv([1,0],[1,2,2]),[1,6,13]);>> tf(num,den)Transfer function:1------------------------------------s^5 + 8 s^4 + 27 s^3 + 38 s^2 + 26 s>> num=[0,0,1];>> den=[1,8,27,38,26];>> rlocus(num,den)>> grid>> xlabel('Real Axis'),ylabel('Imaginary Axis')>> title('Root Locus')②num=[1,12];den=conv(conv([1,1],[1,12,100]),[1,10]); >> tf(num,den) Transfer function:s + 12--------------------------------------s^4 + 23 s^3 + 242 s^2 + 1220 s + 1000 >> num=[1,12]; >> den=[1,23,242,1220,1000];>> k=1:0.5:1000;>> rlocus(num,den)>> grid③num=[0.05 1];den=conv(conv([1,0],[0.0714 1]),[0.012 0.1 1]); rlocus(num,den)r=rlocus(num,den)[r,k]=rlocus(num,den)G=tf(num,den);rlocus(G);[k,r]=rlocfind(G)G_c=feedback(G,1);step(G_c)gridxlabel('Real Axis'),ylabel('Imaginary Axis')title('Root Locus')从k的取值可以知道系统是稳定的。
利用Matlab绘制系统的根轨迹本章前面的内容介绍了控制系统根轨迹的绘制以及利用系统大致的根轨迹图分析系统性能的方法,若要由根轨迹获得系统在某一特定参数下准确的性能指标或者准确的闭环极点,需要依据幅值条件精确地作图。
如果利用MATLAB工具箱中函数,则可方便、准确地作出根轨迹图,并利用图对系统进行分析。
MATLAB工具箱中,求系统根轨迹的几个常用函数有rlocus,rlocfind,sgrid,下面通过具体的例子来说明这些函数的应用。
例4-13控制系统的开环传递函数为G(s)H(s)=绘制系统的根轨迹图。
解利用函数rlocus函数可直接作出系统的根轨迹图,程序如下:%example4-13%num=[1,5];dun=[1,6,11,6,0];rlocus(num,dun)执行该程序后,可得到如图4-20所示的根轨迹。
图4-20例4-13题根轨迹图利用函数rolcus可画出系统的根轨迹图后,可用rlocfind函数在根轨迹上选择任意极点,得到相应的开环增益和其它闭环极点。
例4-14控制系统的开环传递函数为绘制系统的根轨迹图,并确定根轨迹的分离点及相应的开环增益。
解将开环传递函数写为Matlab程序如下:%example4-14%num=[1];den=[0.0002,0.03,1,0];rlocus(num,den)title(‘Root Locus’)[k,p]=rlocfind(num,den)程序执行过程中,先绘出系统的根轨迹,并在图形窗口中出现十字光标,提示用户在根轨迹上选择一点,这时,将十字光标移到所选择的地方,可得到该处对应的系统开环增益及其它闭环极点。
此例中,将十字光标移至根轨迹的分离点处,可得到k=9.6115p=-107.7277-21.9341-20.3383若光标能准确定位在分离点处,则应有两个重极点,即相等。
程序执行后,得到的根轨迹图如图4-21所示。
图4-21例4-14系统的根轨迹例4-15开环系统的传递函数为绘制系统的根轨迹,并分析系统的稳定性。
实验三 MATLAB系统根轨迹和频域分析实验一、实验目的1.学习使用MATLAB求特征多项式的根,分析系统稳定性;2.学习使用MATLAB由传递函数求零点和极点;3.学习使用MATLAB绘制根轨迹;4.掌握由根轨迹分析系统性能的方法;5.学习使用MATLAB绘制Bode图和Nyquist图;6.掌握使用Bode图和Nyquist图分析系统性能的方法。
二、实验仪器计算机三、实验内容3.1特征多项式求解3.1.1直接求特征多项式的根设P为特征多项式的系数矢量,用MATLAB函数roots( )可直接求出方程P=0在复数范围内的解,该函数的调用格式为:v=roots(p)例二十三已知系统的特征多项式为:特征方程的解可由下面的MATLAB命令得出:p=[1,0,3,2,1,1]v=roots(p)结果显示:v =0.3202+1.7042i0.3202-1.7042i-0.72090.0402+0.6780i0.0402-0.6780i利用多项式求根函数roots( ),可方便的求出系统的零点和极点,然后根据零极点分析系统稳定性和其他性能。
3.1.2 由根创建多项式如果已知多项式的因式分解式或特征根,可由MATLAB函数pol y( )直接得出特征多项式系数矢量,其调用格式为:p=poly(v)。
如上题中:v =[0.3202+1.7042i;0.3202-1.7042i;-0.7209;0.0402+0.6780i;0.0402-0.6780i];p=poly(v)结果显示:p=1.0000 -0.0000 3.0000 2.0000 1.0000 1.0000由此可见,函数roots( )与函数poly( )互为逆运算。
3.1.3 多项式求值在MALAB中通过函数polyval()可求得多项式在给定点的值,该函数的调用格式为:polyval(p,v )。
对于上题中的p值,求取多项式在x点的值,可输入如下命令:p=[1,0,3,2,1,1];x=1polyval(p,x)结果显示:ans=83.1.5 由传递函数求零点和极点在MATLAB控制系统工具箱中,给出了由传递函数对象G求系统零点和极点的函数,其调用格式分别为:Z=tzero(G)P=pole(G)注意:上式中要求的G必须是零极点模型对象。
实验二 MATLAB 及仿真实验(控制系统的根轨迹分析)一 实验目的1.利用计算机完成控制系统的根轨迹作图2.了解控制系统根轨迹图的一般规律3.利用根轨迹图进行系统分析二 实验内容1. ()()()21++=s s s k s G g要求:(一)记录根轨迹的起点、终点与根轨迹的条数;n0=[0 0 0 1];den=conv(conv([1 0],[1 1]),[1 2]);rlocus(n0,den);%绘制系统根轨迹v=[-8 2 -4 4];axis(v);运行结果:起点为(0,0),(-1,0),(-2,0),终点为无穷远;根轨迹条数为三条(二)确定临界稳定时的根轨迹增益gL kk=1;z=[];p=[0 -1 -2];[num,den]=zp2tf(z,p,k);%z为零点值,p为极点值,k为系数rlocus(num,den);[k,r]=rlocfind(num,den);运行结果:k约为6.032.()()23)(++=sssKsG g要求:确定系统具有最大超调量时的根轨迹增益;3.绘制下列各系统根轨迹图。
num=[1 2 4];den1=conv([1 0],[1 4]);den2=conv([1 6],[1 4 1]);den=[den1,den2];G=tf(num,den);sys=feedback(G,1);%对G提供为1的负反馈rlocus(sys);num=[1 1];den1=[1 0];den2=conv([1 -1],[1 4 16]); den=[den1,den2];G=tf(num,den);sys=feedback(G,1);%对G 提供为1的负反馈 rlocus(sys); )164)(1()1(2++-+s s s s s k — R (s ) C (s4.绘制下列各系统根轨迹图。
开环传递函数:(1))6.3()2.0()()(2++=s s s k s H s G ; num=[1 0.2];den=conv([1 0 0],[1 3.6]);sys=tf(num,den);rlocus(sys);(2))106.0)(5.0()()(2+++=s s s s k s H s Gnum=[0 1];den1=conv([1 0 ],[1 0.5]); den=conv(den1,[1 0.6 10]); sys=tf(num,den); rlocus(sys);。
实验四基于MATLAB的根轨迹绘制与性能分析一、实验目的1.了解根轨迹的概念和作用;2.学习使用MATLAB绘制根轨迹;3.通过根轨迹进行系统性能分析。
二、实验原理1.根轨迹的概念根轨迹是指随着系统参数变化,系统极点随参数变化所经过的连续点的轨迹。
根轨迹可以用来表示系统的动态性能,并可以用来分析系统的稳定性、抗干扰能力以及动态响应等。
2.根轨迹的绘制方法根轨迹的绘制方法主要有以下几步:(1)确定系统传递函数的开环极点和零点;(2)根据系统传递函数的特征方程确定根轨迹起始点和抵达无穷远点的分支数量;(3)确定分支的方向;(4)计算根轨迹抵达无穷远点的角度;(5)计算根轨迹与实轴的交点。
三、实验步骤1.准备工作(1)安装MATLAB软件,并确保已安装了Control System Toolbox;(2)准备所需绘制根轨迹的系统传递函数。
2.绘制根轨迹(1)在MATLAB命令窗口中输入以下命令,定义系统传递函数:G = tf([1],[1 2 3]);(2)输入以下命令,绘制系统的根轨迹:rlocus(G);3.性能分析(1)根据根轨迹的形状,可以判断系统的稳定性。
如果根轨迹与实轴相交的次数为奇数,则系统是不稳定的。
(2)根据根轨迹的形状以及相交点的位置,可以判断系统的过渡过程的振荡性和阻尼性。
(3)根据根轨迹抵达无穷远点时的角度,可以判断系统的相对稳定性。
角度接近0或180度时,系统相对稳定。
(4)根据根轨迹抵达实轴的位置,可以判断系统的动态性能。
抵达实轴的位置越远离原点,系统的动态响应越快。
四、实验结果分析通过上述步骤,我们可以得到系统的根轨迹图,并根据根轨迹图进行性能分析。
根据根轨迹的形状、交点位置、角度以及抵达实轴的位置,我们可以判断系统的稳定性、过渡过程的振荡性和阻尼性、相对稳定性以及动态响应速度。
根轨迹分析可以帮助我们设计和优化系统的控制器,从而改善系统的性能。
五、实验总结本实验通过MATLAB绘制根轨迹,并利用根轨迹进行系统性能分析。
实验三 MATLAB用于根轨迹分析
一、实验目的
通过使用MATLAB完成根轨迹绘制、部分分式展开以及根轨迹分析等工作。
二、实验原理
绘制根轨迹可用函数rlocus(num,den)或rlocus(num,den,k)。
其中num,den分别对应系统开环传递函数的分子系数和分母系数构成的数组。
如果参数k是指定的,将按照给定的参数绘制根轨迹图,否则k是自动确定的,k的变化范围为0到∞。
三、实验内容
用MATLAB绘制系统的根轨迹图。
四、实验代码
1、
num=[1];
den=[1 3 2 0];
rlocus(num,den)
2、
Gc=tf(1,[1 5]);
Go=tf([1 1],[1 8 0]);
H=tf(1,[1 2]);
rlocus(Gc*Go*H);
v=[-10 10 -10 13];
axis(v);
grid on
五、实验结果
1、
2、
六、实验总结
本次实验通过MATLAB实现了由系统结构图绘制根轨迹图。
七、实验心得
本次实验相对于前两次实验来说比较简单、较为容易实现,但是需要结合其它相关的函数比如说Gain、Pole、Damping等函数来加以理解。
MATLAB线性系统的根轨迹实验实验报告实验名称线性系统的根轨迹一、实验目的1.熟悉MATLAB用于控制系统中的一些基本编程语句和格式。
2.利用MATLAB语句绘制系统的根轨迹。
3.掌握用根轨迹分析系统性能的图解方法。
4.掌握系统参数变化对特征根位置的影响。
二、实验内容1.请绘制下面系统的根轨迹曲线G(s)?K 22s(s?2s?2)(s?6s?13)G(s)?K(s?12)(s?1)(s2?12s?100)(s?10)G(s)?K(0.05s?1) 2s(0.0714s?1)(0.012s?0.1s?1)同时得出在单位阶跃负反馈下使得闭环系统稳定的K值的范围。
2. 在系统设计工具rltool界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。
三、实验结果及分析1.请绘制下面系统的根轨迹曲线G(s)?Ks(s2?2s?2)(s2?6s?13)G(s)?K(s?12) 2(s?1)(s?12s?100)(s?10)G(s)?K(0.05s?1)2s(0.0714s?1)(0.012s?0.1s?1)同时得出在单位阶跃负反馈下使得闭环系统稳定的K值的范围。
(1)>> num=[0 0 1];>> den=[conv([1,2,2],[1,6,13]),0]; >> rlocus (num,den)>> [k,r]=rlocfind(num,den)Select a point in the graphics windowselected_point =0.0071 + 1.0248i k =31.4829 r =-2.8088 + 2.1856i -2.8088 - 2.1856i -2.4150 0.0163 +1.0144i 0.0163 - 1.0144i使得闭环系统稳定K的范围为K?(0,31.4)(2) num=[0 1 12];den=[conv(conv([1,1],[1,12,100]),[1,10])]; rlocus (num,den)[k,r]=rlocfind(num,den)Select a point in the graphics windowselected_point =0.0355 +10.4037i k =1.1953e+003 r =0.1898 +10.2777i 0.1898 -10.2777i -11.6898 + 2.9253i -11.6898-2.9253i e?003) 使得闭环系统稳定K的范围为K?(0,1.1953(3) num=[0.05,1];>> den=[conv([0.0714,1],[0.012,0.1,1]),0]; >> rlocus (num,den)[k,r]=rlocfind(num,den)Select a point in the graphics windowselected_point =0.0711 + 8.3851i k =7.8321 r =-0.0336 + 8.5173i -0.0336 - 8.5173i -11.1359 + 1.4131i -11.1359 -1.4131i使得闭环系统稳定K的范围为K?(0,7.8)2. 在系统设计工具rltool界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。
M A T L A B线性系统的根
轨迹实验
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
实验报告
实验名称 线性系统的根轨迹
一、实验目的
1.熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。
2.利用MATLAB 语句绘制系统的根轨迹。
3.掌握用根轨迹分析系统性能的图解方法。
4.掌握系统参数变化对特征根位置的影响。
二、实验内容
1.请绘制下面系统的根轨迹曲线
)
136)(22()(22++++=s s s s s K s G )
10)(10012)(1()12()(2+++++=s s s s s K s G 2(0.051)()(0.07141)(0.0120.11)
K s G s s s s s +=+++ 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。
2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。
三、实验结果及分析
1.请绘制下面系统的根轨迹曲线
)
136)(22()(22++++=s s s s s K s G )
10)(10012)(1()12()(2+++++=s s s s s K s G 2(0.051)()(0.07141)(0.0120.11)
K s G s s s s s +=+++ 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。
(1)>> num=[0 0 1];
>> den=[conv([1,2,2],[1,6,13]),0]; >> rlocus (num,den)
>> [k,r]=rlocfind(num,den)
Select a point in the graphics window selected_point =
+
k =
r =
+
-
+
-
使得闭环系统稳定K的范围为)4.
K
31
,0(
(2) num=[0 1 12];
den=[conv(conv([1,1],[1,12,100]),[1,10])]; rlocus (num,den)
[k,r]=rlocfind(num,den)
Select a point in the graphics window selected_point =
+
k =
+003
r =
+
+
使得闭环系统稳定K的范围为)
∈e
K
1953
.1,0(+
003
(3) num=[,1];
>> den=[conv([,1],[,,1]),0];
>> rlocus (num,den)
[k,r]=rlocfind(num,den)
Select a point in the graphics window selected_point =
+
k =
r =
+
-
+
-
使得闭环系统稳定K的范围为)8.7,0(
K
2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并观察增加极、零点对系统的影响。
①)136)(22()(22++++=
s s s s s K s G
先令G(s)=1/s,则可得其单位阶跃响应波形图为
然后逐步添加如下:
第一步、添加共轭极点-1+j1和-1-j1得到G(s)=1/[s(s 2+2s+2)],运行可得其单位阶跃响应波形为
第二步、添加共轭极点-3+j2和-3-j2得到G(s)=1/[s(s 2+2s+2)( s 2+6s+13)],运行后可得其单位阶跃响应波形为
②)10)(10012)(1()12()(2+++++=s s s s s K s G 先令G(s)=1/(s+1),则可得其单位阶跃响应波形为
然后逐步添加如下:
第一步、添加共轭极点-6+j8和-6-j8得到G(s)=1/[(s+1)(s2+12s+100)],运行后可得其单位阶跃响应波形为
第二步、添加极点-10得到G(s)=1/[(s+1)(s2+12s+100)(s+10)],运行后可得其单位阶跃响应波形为
第三步、添加零点-12得到G(s)=(s+12)/[(s+1)(s 2+12s+100)(s+10)], 运行后可得其单位阶跃响应波形为
③)11.0012.0)(10714.0()105.0()(2++++=s s s s K s G 先令G(s)=1/s,则可得其单位阶跃响应波形图为
然后逐步添加如下:
第一步、添加极点-1/得到G(s)=1/[s+1)], 运行后可得其单位阶跃响应波形为
第二步、添加一对共轭极点,即分子添加项(++1)后可得到
G(s)=1/[s+1)( ++1)]运行后可得其单位阶跃响应波形为
第三步、添加极点-20得到G(s)=1/[s+1)( ++1)+1)],运行后可得其单位阶跃响应波形为
由图知,给系统添加开环极点会使系统的阶次升高,若添加的合理,会使系统的稳态误差减小,同时若添加的不合理,反倒会使系统不稳定;给系统添加开环零点,可使原来不稳定的系统变成稳定的系统。
四、实验心得与体会
本次实验我们首先熟悉了MATLAB用于控制系统中的一些基本编程语句和格式,随后又利用MATLAB语句绘制系统的根轨迹。
课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图,而用MATLAB可以方便地绘制精确的根轨迹图,并可通过自己添加零极点或者改变根轨迹增益的范围来观测参数变化对特征根位置的影响。
更加熟练地掌握了MATLAB的操作方法。
?
11。