第章多自由度系统的振动题解
- 格式:doc
- 大小:1.29 MB
- 文档页数:28
第六章 多自由度系统固有频率和主振型的两种近似解法从多自由度问题的精确解的求解过程可知,求振系的固有频率及主振型是一项必不可少的过程,当自由度较少时,可直接求固有频率及主振型,但当自由度较多时,关于固有频率的求解就很复杂,如一个16自由度的振动问题,仅为展开频率方程的行列式,就需要进行720次计算,当然这些计算可借助计算机解决,但关于固有频率的近似计算及其计算思想,在实际应用及理论研究中仍具有一定的意义。
本章主要介绍求固有频率的两种方法:矩阵迭代法及传递矩阵法。
6-1矩阵迭代法矩阵迭代法适合于自由度较多的复杂系统,该法可以同时计算出系统的固有频率和相应的主振型,当自由度很多,但只要计算出低阶的几个频率时,矩阵迭代法很为适用,其大量的计算可由计算机完成。
在第五章已经介绍过,多自由度无阻尼系统的振动微分方程有两种形式,一种是用刚度矩阵建立的,其固有频率和主振型可由下式求,[]{}[]{}{}02=-A M p A K或写成[]{}[]{}A M p A K 2= (6-1)另一种是用柔度矩阵建立的,其固有频率和主振型可由下式求出{}[][]{}{}012=-A M R A p 或写成{}[][]{}A M R A p=21(6-2) 用[]1-M 前乘(6-1)式,得[]1-M []{}{}A p A K 2= (6-3)方程(6-2)(6-3)可写成如下统一的形式[]{}{}A A D λ= (6-4)(6-4)式称为特征值问题的标准形式,即矩阵迭代法的基本迭代公式。
式中[]D 称为动力矩阵,λ则是矩阵[]D 的特征值,当[]D 是按刚度矩阵形成时,即[][][]K M D 1-=,则λ表示固有频率的平方,λ=p 2,而当[]D 是按柔度矩阵形成时,即[][][]K R D =,则λ表示固有频率的平方的倒数,λ=1/p 2。
显然,任一阶固有频率和主振型都是(6-4)式的精确解。
下面介绍从(6-4)式出发进行迭代的基本过程:1) 某个经过基准化了的初始迭代向量{}1A (所谓基准化就是选取迭代向量的某个分量为基准值1),现选取{}1A ,使其第一个元素A 1,1为基准值1,并作[]{}1AD =运算,运算得到一个新的列阵{}1B ,再将{}1B 基准化,即将新的列阵{}1B 中的各元素均除以B 1,1,可得[]{}{}{}21,111A B B A D ==2) 与{}2A ,如果{}1A ≠{}2A ,则重复上述步骤,以[]D 乘{}2A ,得[]{}{}{}32,122A B B A D ==3) 比{}2A 与{}3A ,如果{}3A ≠{}2A ,则继续重复上述步骤,以[]D 乘{}3A ,…,直到第k 次迭代[]{}{}{}1,1+==k k k k A B B A D ,当式中{}k A ={}1+k A 时停止,这时,特征值1λ=B 1,k ,而相应的特征向量就等于{}k A 。
45 / 2045习 题3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。
解:系统具有一个自由度,选复摆转角ϕ为广义坐标,原点及正方向如如题4-1图所示。
复摆在任意位置下,根据刚体绕定轴转动微分方程O O M J =ϕ其中)(22a gP J C O +=ρ 得到复摆运动微分方程为ϕϕρcos )(22Pa a gP C =+ 或0cos )(22=-+ϕϕρga a C3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为固定R ,质量为m ,对质心的回转半径为C ρ,在平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。
解:系统具有一个自由度,选θ为广义坐标。
半圆柱体在任意位置的动能为:222121ωC C J mv T +=题3-1图题3-2图46 / 2046用瞬心法求C v :2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2CC m J ρ= 故2222221)cos 2(21θρθθ Cm Re R e m T +-+=系统具有理想约束,重力的元功为 θθδd mge W sin -=应用动能定理的微分形式W dT δ=θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=⎥⎦⎤⎢⎣⎡+-+ θθθθθθθθθθρd mge d mRe d mRe d R e m C sin sin cos 2)(2222-=+-++ 等式两边同除dt ,θθθθθθθθθθρ sin sin cos 2)(2222mge mRe mRe R e m C -=+-++ 0≠θ ,等式两边同除θ故微分方程为0sin sin )cos 2(2222=+++-+θθθθρθmge mRe Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为0])[(22=++-θθρge r R C要点及讨论(1)本题也可以用平面运动微分方程求解。
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
第4章 多自由度系统振动分析的数值计算方法用振型叠加法确定多自由度系统的振动响应时,必须先求得系统的固有频率和主振型。
当振动系统的自由度数较大时,这种由代数方程求解系统固有特性的计算工作量很大,必须利用计算机来完成。
在工程中,经常采用一些简单的近似方法计算系统的固有频率及主振型,或将自由度数较大的复杂结构振动问题简化为较少阶数的振动问题求解,以得到实际振动问题的近似分析结果。
本章将介绍工程上常用的几种近似解法,适当地选用、掌握这类实用方法,无论对设计研究或一般工程应用都将是十分有益的。
§4.1 瑞利能量法瑞利(Rayleigh )能量法又称瑞利法,是估算多自由系统振动基频的一种近似方法。
该方法的特点是:①需要假定一个比较合理的主振型;②基频的估算结果总是大于实际值。
由于要假设主振型,因此,该方法的精度取决于所假设振型的精度。
§4.1.1 第一瑞利商设一个n 自由度振动系统,其质量矩阵为[]M 、刚度矩阵为[]K 。
多自由度系统的动能和势能一般表达式为{}[]{}{}[]{}/2/2TTT x M x U x K x ⎫=⎪⎬=⎪⎭&& (4.1.1)当系统作某一阶主振动时,设其解为{}{}(){}{}()sin cos x A t x A t ωαωωα=+⎫⎪⎬=+⎪⎭&(4.1.2)将上式代入式(4.1.1),则系统在作主振动时其动能最大值max T 和势能最大值max U 分别为{}[]{}{}[]{}2max max /2/2TTT A M A U A K A ω⎫=⎪⎬=⎪⎭(4.1.3)根据机械能守恒定律,max max T U =,即可求得{}[]{}{}[]{}()2I TTA K A R A A M A ω== (4.1.4)其中,()I R A 称为第一瑞利商。
当假设的位移幅值列向量{}A 取为系统的各阶主振型{}i A 时,第一瑞利商就给出各阶固有频率i ω的平方值,即{}[]{}{}[]{}2(1,2,,)Ti i i Ti i A K A i n A M A ω==L(4.1.5)在应用上式时,我们并不知道系统的各阶主振型{}i A ,只能以假设的振型{}A 代入式(4.1.4),从而求出的相应固有频率i ω的估计值。
机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。
(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。
(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。
(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。
(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。
(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。
(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。
(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。
(X )9、隔振系统的阻尼愈大,则隔振效果愈好。
(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。
(J)二、计算题:1、一台面以f频率做垂直正弦运动。
如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。
所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。
的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。
试验装置如图1所示,记录其振动周期。
船体振动基础1第2章多自由度系统的振动第章多自由度系统的振一、引言二、两自由度系统的振动2上节课内容的回顾1.几个重要概念主振型第阶主振型第二阶主振型多自由度系统主振型,第一阶主振型,第二阶主振型基频,第一阶固有频率,第二阶固有频率,……主振动,模态个自度系自上节课内容的回顾2.两个自由度系统的自由振动(P37)⎬⎫=++−=−++00)(2212111x k k x k xm x k x k k xm &&&&⎭)(2321222个自度系自上节课内容的回顾2.两个自由度系统的自由振动(P41-43)m &&⎭⎬⎫=++−=−++0)(0)(23212222212111x k k x k xm x k x k k x&&①假设简谐形式的解振动时,两个质量按相同频率和相位角作简谐振动。
()()⎭⎬⎫+=+=θωθωt A x t A x n n sin sin 2211上节课内容的回顾将简谐振动解代入运动方程式上节课内容的回顾解特征方程式的根,可以得到:上节课内容的回顾将特征值代入②的振幅A1和振幅A2,得到对应于和的振幅A1和振幅A2之间的两个确定的比值:21ω上节课内容的回顾⑥主振动的确定。
z 系统以某一阶固有频率按其相应的主振型作振动,z 称为系统的主振动(1)(1)⎫第一阶主振动为:()1111(1)(1)(1)22111111sin()sin()sin x A t xA t A t ωθωθβωθ=+⎪⎬=+=+⎪⎭第二阶主振动为:(2)(2)1122sin()x A t ωθ⎫=+⎪()(2)(2)(2)22222122sin()sin x A t A t ωθβωθ⎬=+=+⎪⎭z 系统作主振动时,各点同时经过静平衡位置和到达最大偏离位置,z 以确定的频率和振型作简谐振动。
上节课内容的回顾⑦一般情况下自由振动的通解。
并非在任何情况下系统都会作主振动形式的运动,一般情况下系统运动方程的通解为上述两种主振动的叠加:o在一般情况下,系统的自由振动是两种不同频率的主振动的线性组合,其结果不一定是简谐振动。
振动⼒学各章作业题解()第02章单⾃由度系统的振动2.1 ⼀根抗弯刚度72=3610Ncm EI ?的简⽀架,两⽀承间跨度l 1=2m ,⼀端伸臂l 2=1m ,略去梁的分布质量,试求悬臂端处重为Q =2548 N 的重物的⾃由振动频率。
【提⽰:22123()EJ k l l l =+,2212()3st Ql l l EI δ+=,11.77n st gk gQ ωδ=== 1/s 】 2.2 梁AB 其抗弯刚度72=910Ncm EI ?,A 端与B 端由弹簧⽀承,弹簧刚性系数均为k =52.92 kN/m ,如图所⽰。
略去梁的分布质量,试求位于B 端点左边1⽶处,重为Q =4900 N 的物块⾃由振动的周期。
【解法1:通过计算静变形求解。
A ,B 弹簧受⼒为3Q 和23Q,压缩量为3Q k 和23Q k ,则由弹簧引起的静变形为159Q k δ=;利⽤材料⼒学挠度公式求出梁变形引起的静变形222212(321)4619Q QEI EIδ??--==?。
周期为:1222 1.08nT gδδππω+===s 。
解法2:通过弹簧刚度的串并联计算总等效刚度求解。
A ,B 弹簧相对Q 处的等效刚度为(产⽣单位变形需要的⼒,利⽤解法1中计算的静变形结果)195k k =;利⽤材料⼒学挠度公式求出梁相对Q 处的等效刚度294EI k =;总等效刚度为:12111eq k k k =+。
周期为22 1.08neqQT gk ππω===s 。
】 2.4 ⼀均质刚杆重为P ,长度为L 。
A 处为光滑铰接,在C 处由刚性系数为k 的弹簧使杆在⽔平位置时平衡。
弹簧质量不计,求杆在竖直⾯内旋转振动时的周期。
【解:利⽤定轴转动微分⽅程:21()32st P l l P k a a g ??δ=-- ,2st lk a P δ=,得:22103P l k a g+= , 222/3223n Pl g l PT ka a gkπππω===】题 2-1 图BAQl 1 l 2题 2-2 图2m1mQkkAB 题 2-4 图lakA CB2.8 ⼀个重为98 N 的物体,由刚性系数为k =9.8 kN/m 的弹簧⽀承着(简化为标准m-k-c 振动系统),在速度为1 cm/s 时其阻⼒为0.98 N 。
多自由度振动系统的特征值问题与模态分析自由度是描述物体运动状态的重要概念,而多自由度振动系统则是指由多个物体组成的振动系统。
在工程领域中,多自由度振动系统的特征值问题与模态分析是非常重要的研究内容。
特征值问题是指在多自由度振动系统中,寻找系统的固有振动频率和振动模态的问题。
对于一个n自由度振动系统,其特征值问题可以表示为:[K] {x} + [M] {x} = \lambda [M] {x}其中[K]是系统的刚度矩阵,[M]是系统的质量矩阵,{x}是系统的振动位移向量,\lambda是特征值。
解特征值问题可以得到系统的特征值和特征向量,从而确定系统的固有振动频率和振动模态。
在解特征值问题时,常常采用模态分析的方法。
模态分析是一种将多自由度振动系统的特征值问题转化为一组独立振动模态的方法。
通过模态分析,可以得到系统的振动模态和相应的特征值。
振动模态是指系统在不同频率下的振动形态,而特征值则代表了系统的固有振动频率。
在进行模态分析时,通常需要进行模态求解和模态分解两个步骤。
模态求解是指求解特征值问题,得到系统的特征值和特征向量。
而模态分解则是将系统的振动模态表示为一组独立的振动模态,通常采用线性组合的形式表示。
在实际工程中,多自由度振动系统的特征值问题和模态分析具有广泛的应用。
例如,在建筑结构设计中,通过模态分析可以确定结构的固有振动频率,从而避免共振现象的发生。
在机械系统中,通过模态分析可以评估系统的动态性能和稳定性。
在航天器设计中,模态分析可以帮助设计师优化结构,提高航天器的抗振能力。
总之,多自由度振动系统的特征值问题与模态分析是工程领域中重要的研究内容。
通过解特征值问题和进行模态分析,可以得到系统的固有振动频率和振动模态,从而对系统的振动特性进行分析和优化。
在实际应用中,特征值问题和模态分析对于工程设计和结构分析具有重要的意义。
62 / 2962习 题4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。
解:由题3-10的结果22121111)(l g m l g m m k k +++=,2221l gm k -=,2212l g m k -=,22222l gm k k += 代入m m m ==21,021==k k ,l l l ==21可求出刚度矩阵K 和质量矩阵M⎥⎦⎤⎢⎣⎡=m m M 00;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=l mg lmg l mg l mg K 3 由频率方程02=-M p K ,得0322=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=mp l mg l mg lmgmp l mg B 0242222242=+-∴l g m p l g m p ml g p )22(1-=∴ ,lgp )22(2+= 为求系统主振型,先求出adjB 的第一列⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=l mg mp lmg adjB 2分别将频率值21p p 和代入,得系统的主振型矩阵为题4-1图63 / 2963⎥⎦⎤⎢⎣⎡-=112)1(A ⎥⎦⎤⎢⎣⎡+=112)2(A4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。
解:设杆的转角θ和物块位移x 为广义坐标。
利用刚度影响系数法求刚度矩阵k 。
设0,1==x θ,画出受力图,并施加物体力偶与力2111,k k ,由平衡条件得到,222111a k b k k +=, a k k 221-=设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到,12k a k 2-=, a k k 222=得作用力方程为⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡--++⎭⎬⎫⎩⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡0000312222221221x a k a k a k a k b k x m a m θθ由频率方程02=-M K p ,得031222222212221=----+p m a k ak a k p a m a k b k4-3 题4-3图所示的系统中,两根长度题4-3图题4-2图64 / 2964为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和k 1=k 2=k 时系统的固有频率。