原子光谱项
- 格式:ppt
- 大小:443.00 KB
- 文档页数:22
原子光谱项总述原子中个别电子的运动状态用n、l、m、m s四个量子数表示,而用L、S、J、M J四个量子数描述原子整体的状态。
原子微观状态数以价电子电子组态为2p2的原子为例,p轨道上的电子可能有6种状态(p),而p轨道上的两个电子不可能有两种相轨道的m取值为±1,0;m s的取值为±12同的状态,故可能出现的情况数为C62=15,故p2组态的原子的微观状态数为15。
若电子组态为2s12p1,s轨道电子可能的状态有2种(m取值为0;m s的取),p轨道电子可能状态为6种,故微观状态数=2×6=12值为±12若电子组态为2p13p1,则p轨道的电子有6种状态,因为两个电子的n不相同,所以不用考虑会出现相同的状态,故微观状态数=6×6=12。
角动量角动量守恒原理:在没有外界影响下,一个微粒的运动或包含若干微粒运动的体系,其总角动量是保持不变的。
对于多电子体系,由于静电作用,各电子轨道运动必定会相互作用,个别电子的角动量就不确定,但所有电子的角动量是保持不变的,而且在某一方向上有恒定的分量。
L-S耦合(罗素-桑德森耦合):角动量包含着轨道角动量和自旋角动量,该耦合的方式是,先将各个原子的轨道角动量组合起来,得到原子总的轨道角动量L⃗,再将各个原子的自旋角动量组合起来,得到总的自旋角动量S,最后将得到的L⃗和S进行组合,得到原子总的角动量J总轨道角动量量子数L(1)量子力学证明:原子总轨道角动量是量子化的,L⃗的大小由原子总轨道角动量量子数L决定,L⃗的大小为|L⃗|=√L(L+1)ℏ,其中ℏ为约化普朗克常数,ℏ=ℎ。
2π(2)原子总轨道角动量量子数L的取值与两个需要耦合的电子的角量子数l有关,l1+l2≥L≥|l1−l2|,LϵZ,如果存在多个电子,则先算两个电子耦合的角动量,再加上第三个电子的角动量,以此类推。
(3)例如,电子组态为p2,则两个电子的角动量为l1=1,l2=1,故2≥L≥0,L 的取值为0,1,2。
2004年6月 第21卷第2期陕西师范大学继续教育学报(西安)Journal of Further Educati on of Shaanxi N o r m al U niversity Jun.2004V o l.21N o.2 原子光谱项的意义和推求姜心田(陕西师范大学化学与材料科学学院 教授 西安710062) 摘 要:原子光谱项是反映原子内部轨一轨,轨一旋,旋一旋复杂相互作用能量效应的,是解释原子光谱的理论基础。
本文就原子光谱项的意义,L-S耦合推求方法及H und规则通过实例给出了说明。
关键词:原子状态;L-S耦合;量子数L,S,J和m J;H und规则;光谱项;光谱支项中图分类号:O641 文献标识码:A 文章编号:1009-3826(2004)02-0110-051 引言原子中的电子整体总是处在一定的运动状称为原子状态。
每一种原子状态态都具有一定的能量称为原子能量。
这些能量是量子化的。
原子光谱实验对应的是原子的整体状态,原子光谱的精细结构反映了原子内部能级的复杂性。
原子中各电子的主量子数n,角量子数l给定后称为一种组态。
如C原子基态电子层结构为1s22s22p2,简称P2组态。
原子能量的大小显然主要由电子组态决定。
因为原子中各电子的轨道能是由量子数n,l共同决定的。
但轨道能仅包括了电子的动能、电子与核的静电吸引势能以及电子之间的静电排斥势能,只能作为原子能量的初步近似。
由于原子中各电子间还存在着其它复杂的相互作用如轨道——轨道,自旋——自旋静电排斥作用,轨道——自旋磁力相互作用,这些作用均是影响原子能量的因素,是决定原子能量更高一级的近似。
故在一种组态中还可能存在不止一种的能量状态。
对于全充满的闭壳层组态如2s2,2s22p6等每个轨道都占据两个电子,其磁量子粒m和自旋磁量子数m s是唯一确定了的。
然而对于部分充满的壳层组态,或叫做开壳层组态电子的n,l值虽然确定了,但m和m s的值仍然是不能确定的。
洪特规则可以确定原子光谱项的能级顺序原子光谱学是一个研究原子状态及其结构的重要领域。
通过原子光谱学可以研究原子的能级及其结构,可以更好地研究原子的性质。
在原子光谱学的研究中,洪特规则是一个重要的原理,他可以确定原子光谱项的能级顺序。
洪特规则是美国物理学家洪德(Hund)提出的一个概念。
它是一种原子能级填充规则,允许多个电子共居在某个能级上,在填充时保持最小能量状态。
洪特规则规定,同一组原子的多个电子能级填充原则中,当第一填充电子成对填充时,会有更高的能量。
因此,在同一组原子中,电子最初填充时,先填充一对,然后紧接着一个单电子,之后就是第三个电子以及更多的对,这就是洪特规则的基本原理。
洪特规则的另一个重要特点是,在它的填充过程中不涉及原子的自旋状态,因此他是一种更加简单和易于理解的原子填充规则。
洪德规则可以用来确定原子光谱项的能级顺序。
原子通常为一个具有不定自旋的系统,因此原子的能级分布状况由它们的最大自旋构成。
当原子填充电子时,Hund规则规定先填满含有最大自旋的最低能级,而不是全部填满最低能级,这样就可以确定原子光谱项的能级顺序。
洪特规则的应用不仅仅是确定原子光谱项的能级顺序,它还可以用来研究原子的结构和特性,并且它在分子光谱学中也有着重要的作用。
洪德规则是原子光谱学、原子结构学以及分子光谱学中不可或缺的重要概念,它有着十分广泛的应用。
综上所述,洪德规则可以确定原子光谱项的能级顺序,是一个重要的原子填充规则。
它不仅可以用来确定原子光谱项的能级顺序,还可以用来研究原子结构、性质以及分子光谱学的相关性质,因此在原子光谱学、原子结构学以及分子光谱学中都有着重要的作用。