ramberg-osgood 应力应变关系
- 格式:doc
- 大小:10.64 KB
- 文档页数:1
我所认识的应力应变关系应力应变都是物体受到外界载荷产生的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。
则一定材料的物体其产生的应力和应变也必然存在一定的关系。
一 应力-应变关系影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。
图1-1 应力应变关系图图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。
此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。
从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
应力与应变概念及实验应变片原理区分应力与应变的概念应力所谓“应力”,是在施加的外力的影响下物体内部产生的力。
如图 1 所示:在圆柱体的项部向其垂直施加外力P 的时候,物体为了保持原形在内部产生抵抗外力的力——内力。
该内力被物体(这里是单位圆柱体)的截面积所除后得到的值即是“应力”,或者简单地可概括为单位截面积上的内力,单位为 Pa(帕斯卡)或 N/m2 。
例如,圆柱体截面积为 A(m2), 所受外力为 P(N 牛图 1 顿),由外力 =内力可得,应力:(Pa 或者 N/m2 )这里的截面积 A 与外力的方向垂直,所以得到的应力叫做垂直应力。
应变当单位圆柱体被拉伸的时候会产生伸长变形ΔL,那么圆柱体的长度则变为 L+ΔL。
这里,由伸长量ΔL和原长 L 的比值所表示的伸长率(或压缩率)就叫做“应变”,记为ε。
与外力同方向的伸长 (或压缩 )方向上的应变称为“轴向应变”。
应变表示的是伸长率(或压缩率),属于无量纲数,没有单位。
由于量值很小(1 ×10-6 百万分之一 ),通常单位用“微应变”表示,或简单地用μE表示。
而单位圆柱体在被拉伸的状态下,变长的同时也会变细。
直径为 d0 的棒产生Δd的变形时,直径方向的应变如下式所示:这种与外力成直角方向上的应变称为“横向应变”。
轴向应变与横向应变的比称为泊松比,记为υ。
每种材料都有其固定的泊松比,且大部分材料的泊松比都在 0.3 左右。
应力与应变的关系各种材料的应变与应力的关系已经通过实验进行了测定。
图 2 所示为一种普通钢材(软铁)的应力与应变关系图。
根据胡克定律,在一定的比例极限范围内应力与应变成线性比例关系。
对应的最大应力称为比例极限。
或者图 2应力与应变的比例常数E被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。
综上所述,虽然无法对应力进行直接的测量,但是通过测量由外力影响产生的应变可以计算出应力的大小。
应变片的构造及原理应变片的构造应变片有很多种类。
我所认识的应力应变关系应力应变都是物体受到外界载荷产生的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。
则一定材料的物体其产生的应力和应变也必然存在一定的关系。
一 应力-应变关系影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。
图1-1 应力应变关系图图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。
此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。
从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
(整理)弹性⼒学第四章应⼒和应变关系第四章应⼒和应变关系知识点应变能原理应⼒应变关系的⼀般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式⼴义胡克定理⼀个弹性对称⾯的弹性体本构关系各向同性弹性体的应⼒和应变关系应变表⽰的各向同性本构关系⼀、内容介绍前两章分别从静⼒学和运动学的⾓度推导了静⼒平衡⽅程,⼏何⽅程和变形协调⽅程。
由于弹性体的静⼒平衡和⼏何变形是通过具体物体的材料性质相联系的,因此,必须建⽴了材料的应⼒和应变的内在联系。
应⼒和应变是相辅相成的,有应⼒就有应变;反之,有应变则必有应⼒。
对于每⼀种材料,在⼀定的温度下,应⼒和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理⽅程或者本构关系。
对于复杂应⼒状态,应⼒应变关系的实验测试是有困难的,因此本章⾸先通过能量法讨论本构关系的⼀般形式。
分别讨论⼴义胡克定理;具有⼀个和两个弹性对称⾯的本构关系⼀般表达式;各向同性材料的本构关系等。
本章的任务就是建⽴弹性变形阶段的应⼒应变关系。
⼆、重点1、应变能函数和格林公式;2、⼴义胡克定律的⼀般表达式;3、具有⼀个和两个弹性对称⾯的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外⼒作⽤下产⽣变形,因此外⼒在变形过程中作功。
同时,弹性体内部的能量也要相应的发⽣变化。
借助于能量关系,可以使得弹性⼒学问题的求解⽅法和思路简化,因此能量原理是⼀个有效的分析⼯具。
本节根据热⼒学概念推导弹性体的应变能函数表达式,并且建⽴应变能函数表达的材料本构⽅程。
根据能量关系,容易得到由于变形⽽存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应⼒应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐⼆次函数。
因此由齐次函数的欧拉定理,可以得到⽤应变或者应⼒表⽰的应变能函数。
```知识文章格式标题:深入解读Ramberg-Osgood滞回曲线方程正文:在工程力学和材料力学领域,Ramberg-Osgood滞回曲线方程是一个非常重要的方程。
它被广泛应用于描述材料的非线性应力-应变关系,尤其是弹塑性材料。
在本文中,我们将深入解读Ramberg-Osgood滞回曲线方程,探讨其物理意义、参数含义以及应用范围。
一、Ramberg-Osgood滞回曲线方程的推导与定义Ramberg-Osgood滞回曲线方程可以用来描述材料在弹性和塑性阶段的应力-应变曲线。
具体表达式如下:σ = Kε^n + αKε^{m}在公式中,σ代表应力,ε代表应变,K是材料的弹性模量,n和m是材料的流变指数,α是材料的非线性参数。
这个方程可以比较准确地描述材料的应力-应变关系,尤其是在高塑性变形区域。
二、Ramberg-Osgood滞回曲线方程的物理意义Ramberg-Osgood滞回曲线方程的物理意义在于描述材料在塑性变形阶段的非线性行为。
通过调整参数n、m和α,可以很好地拟合实际材料的应力-应变曲线,为工程设计和材料选型提供重要参考。
三、Ramberg-Osgood滞回曲线方程的应用范围Ramberg-Osgood滞回曲线方程适用于描述高塑性材料的应力-应变关系,特别是在大应变和多次加载循环下的材料行为。
它在航空航天、汽车制造、结构工程等领域有着广泛的应用。
结论与展望通过本文的讨论,我们对Ramberg-Osgood滞回曲线方程有了更深入的了解。
它不仅可以帮助工程师和科研人员更准确地描述材料的力学性能,还可以为材料设计和工程应用提供重要参考。
然而,对于不同类型材料的Ramberg-Osgood滞回曲线方程参数的确定仍然需要更多的研究和实验数据支持。
个人观点作为一名材料工程师,我深知Ramberg-Osgood滞回曲线方程在工程设计和材料选型中的重要性。
在实际工程应用中,我们需要结合实际情况和大量试验数据来确定材料的Ramberg-Osgood滞回曲线参数,以确保设计的可靠性和安全性。
我所认识的应力应变关系一 在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。
在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即εσX XE =在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律本式应该是91个应变分量 单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。
(1)具有一个弹性对称面的线弹性体的应力应变公式如下(2)正交各向异性弹性体的弹塑性体公式如下(3)各向同性弹性体的本构方程各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。
在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足:111213x x y zC C C σεεε=++ 212223y x y z C C C σεεε=++313233z x y zC C C σεεε=++ (2-3)x ε对x σ的影响与y ε对y σ以及z ε对z σ的影响是相同的,即有112233==C C C ;y ε和z ε对x σ的影响相同,即1213=C C ,同理有2123=C C 和3132=C C 等 ,则可统一写为:112233==C C C a =122113312332=====C C C C C C b = (2-4)所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。
在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。
广义胡可定律如下式1[()]1[()]1[()]x x y z y y x z z z x y E E E εσνσσεσνσσεσνσσ⎧=-+⎪⎪⎪=-+⎨⎪⎪=-+⎪⎩ 222xy xy yz yz zx zx G G G τγτγτγ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩v 泊松比 2(1)EG ν=+剪切模量 E :弹性模量/杨氏模量 虎克定律E G σετγ==对于应变能函数理解有点浅在此就不多做介绍了。
ramberg-osgood 应力应变关系
应力应变关系是描述材料在外部力作用下发生变形的关系。
在力作用下,材料内部会产生应力,而应变则是材料对应力作用的响应。
应力和应变之间的关系可以通过应力应变曲线来表示。
常见的应力应变关系有线性弹性应力应变关系、塑性应力应变关系和黏弹性应力应变关系等。
线性弹性应力应变关系是指材料在小应变范围内,应力和应变成正比例关系,并且在去除外力后能恢复原始状态。
此关系可以用胡克定律表示,即应力等于弹性模量(Young's modulus)和应变的乘积。
塑性应力应变关系是指材料在大应变范围内,应力和应变不再成正比例关系,并且在去除外力后无法完全恢复到原始状态。
材料会发生塑性变形,导致永久性变形。
黏弹性应力应变关系是指材料既具有弹性特性又具有粘性特性。
在施加外力后,材料会发生弹性变形,而在去除外力后仍然有一部分变形保留下来,称为粘性变形。
黏弹性应力应变关系可以通过弹性模量和黏性模量来描述。
总而言之,应力应变关系描述了材料在力作用下的变形行为,不同材料具有不同的应力应变特性,这对工程设计、材料选择和结构分析等方面具有重要意义。