塑性应力应变关系
- 格式:ppt
- 大小:3.79 MB
- 文档页数:37
材料力学中的应力与应变关系引言:材料力学是研究材料在外力作用下的力学性能和变形规律的学科,应力与应变是材料力学中最基础的概念之一。
应力与应变关系的研究对于材料的设计、工程应用以及材料力学理论的发展具有重要意义。
本文将从宏观和微观两个角度出发,探讨材料力学中的应力与应变关系。
一、宏观角度下的应力与应变关系宏观角度下的应力与应变关系是指在宏观尺度上,材料在外力作用下的力学响应。
我们可以通过引入应力和应变的概念来描述材料的力学行为。
1. 弹性应力与应变关系弹性应力与应变关系是指材料在弹性阶段内,应力与应变之间的关系。
弹性材料在受力后能够恢复到原始形状,且应力与应变呈线性关系。
根据胡克定律,应力与应变之间的关系可以表示为:σ = Eε其中,σ表示应力,E表示弹性模量,ε表示应变。
弹性模量是材料的一种力学性能参数,反映了材料对外力的抵抗能力。
2. 塑性应力与应变关系塑性应力与应变关系是指材料在超过弹性极限后,发生塑性变形时的应力与应变关系。
塑性材料在受力后会发生永久性变形,应力与应变之间不再呈线性关系。
根据真应力与真应变的定义,塑性应力与应变关系可以表示为:σ' = Kε'其中,σ'表示真应力,K表示材料的强度系数,ε'表示真应变。
强度系数是衡量材料塑性变形能力的指标。
3. 强化应力与应变关系强化应力与应变关系是指材料在受到强化处理后,应力与应变之间的关系。
强化处理是通过改变材料的晶体结构或添加外部组分来提高材料的力学性能。
强化应力与应变关系的表达式与具体的强化方式有关,可以通过试验或模型计算得到。
二、微观角度下的应力与应变关系微观角度下的应力与应变关系是指材料在微观尺度上,原子或分子之间的相互作用导致的力学响应。
我们可以通过分子动力学模拟或统计力学方法来研究材料的微观力学行为。
1. 分子动力学模拟分子动力学模拟是一种通过求解牛顿运动方程来模拟材料微观力学行为的方法。
通过分子动力学模拟,我们可以得到材料的应力与应变关系,并研究材料的力学性能和变形机制。
我所认识的应力和应变之间的关系在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。
在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。
对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。
所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。
这类线性弹性体独立的唐兴常数只有两个。
各向同性体本构关系特点:1.主应力与主应变方向重合。
2.体积应力与体积应变成比例。
3.应力强度与应变强度成比例。
4.应力偏量与应变偏量成比例。
工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ⎧⎡⎤=-+=⎣⎦⎪⎪⎪⎡⎤=-+=⎨⎣⎦⎪⎪⎡⎤=-+=⎪⎣⎦⎩,式中分别为弹性模量、泊松比和剪切模量。
在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为()21E G μ=+。
屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。
习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。
对于加载过程如图1OA: 比例阶段;线性弹性阶段AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段EF : 颈缩阶段;应变弱化,软化阶段s σσ≥ C 点为初始屈服点具有唯一性。
在应力超过屈服应力后,如果在曲线上任意一点D 处卸载,应力和应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。
如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变eε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。
第十九章塑性应力—应变关系本构方程塑性变形过程中应力与应变之间的函数关系称为本构方程,也叫做物理方程。
塑性本构方程从本质上反映了物体发生塑性变形时的特征,这一方程和屈服准则都是求解塑性成形问题的基本方程。
第一节弹性应力一应变关系在单向应力状态下,弹性变形时应力与应变之间的关系,由虎克定律表达,即对于一般应力状态下各向同性材料的应力与应变间的关系,则由广义虎克定律表达,即式中,E为弹性模量;为泊松比;G为切变模量。
三个弹性常数E,G间有以下关系若将式(19-1)中的三项相加整理后可得式(19—3)表明,物体弹性变形时其体积变化率与平均应力成正比,这说明应力球张量使物体产生弹性的体积改变。
若将式(19—1)中的前三式分别减去式(19-3),例如式(19—6)表示应变偏张量与应力偏张量成正比,即表明物体形状的改变只是出应力偏张量引起。
由式(19—3)和式(19—5),广义虎克定律可写成张量形式根据式(19—5)可推导出复杂应力状态下应力强度与弹性应变强度之间的关系。
因等效应力为根据式(19-5)可得将上式代入等效应力公式,得式(19—14)表明,在弹性变形范围内,应力强度与弹性应变强度成正比,比例系数仍为E。
可对应相同的应变状态。
同理,只要通过后继屈服轨迹CD里面的任一加载路线(如OACJF)到达F点,情况也是如此。
以上例子充分说明塑性变形时应力与应变之间的关系不是单值关系,而与加载路线(加载历史)有关。
因此,离开加载路线来建立应力与全量塑性应变之间的普遍关系是不可能的。
塑性变形时应力与应变关系的特点可总结如下:(1)应力与应变之间的关系是非线性的,因此,全量应变主轴与应力主轴不一定重合。
(2)塑性变形时可以认为体积不变,即有(3)对于等向强化的应变硬化材料,卸载后再重新加载时的屈服应力就是卸载时的屈服应力,比初始屈服应力要高。
(4)塑性变形是不可逆的,与应变历史有关,即应力一应变关系不再保持单值关系。