2
OP (1, 2 , 3 )
P点向OE投影,投影点N,则OP:。
O
OP ON NP
1
ON ( m , m , m )
第五章:屈服准则和塑性应力应变关系 5.4 两屈服准则的几何图形
所以:
3
P
N
E
NP ( 1 , 2 , 3 ) ( m , m , m ) ( 1 m , 2 m , 3 m ) ( '1 , '2 , '3 )
f ( J 2 , J3 ) C
对拉压性能相同时,以f()是J3的偶函数。 注意:屈服准则方程也是进入塑性后应力需要准则。 因为塑性行为的复杂性,对材料的单向应力状态下,应力应变关系作以 下几种模型的假定,本教材主要用前两种:
第五章:屈服准则和塑性应力应变关系
5.1 屈服准则概念
屈服准则、屈服条件,描述材料从弹性进入塑性并使塑性变形继续的条 件。对于单向应力采用:
s
作为屈服准则。但是对于复合应力状态,屈服准则与应力状态有关,屈服准 则为:
f ( x , y , z , xy , yz , zx ) C
第五章:屈服准则和塑性应力应变关系 5.4 两屈服准则的几何图形
屈服函数表现出几何图形,对了解其性质和两种屈服准 则的比较有积极作用。 屈服函数是一曲面,首先看二维应力,即: 3 0
Mises屈服函数:
2 12 1 2 2 s2
为一椭圆。 Treasca屈服函数:
1 2 s 2 3 s 3 1 s
代表应力偏量。如果P应力状态代表塑 性变形,对于Mises屈服准则: