模型07:方程模型
- 格式:ppt
- 大小:595.00 KB
- 文档页数:25
★结构方程模型要点一、结构方程模型的模型构成1、变量观测变量:能够观测到的变量(路径图中以长方形表示)潜在变量:难以直接观测到的抽象概念,由观测变量推估出来的变量(路径图中以椭圆形表示)内生变量:模型总会受到任何一个其他变量影响的变量(因变量;路径图会受外生变量:模型中不受任何其他变量影响但影响其他变量的变量(自变量;路中介变量:当内生变量同时做因变量和自变量时,表示该变量不仅被其他变量影响,还可能对其他变量产生影响。
内生潜在变量:潜变量作为内生变量内生观测变量:内生潜在变量的观测变量外生潜在变量:潜变量作为外生变量外生观测变量:外生潜在变量的观测变量中介潜变量:潜变量作为中介变量中介观测变量:中介潜在变量的观测变量2、参数(“未知”和“估计”)潜在变量自身:总体的平均数或方差变量之间关系:因素载荷,路径系数,协方差参数类型:自由参数、固定参数自由参数:参数大小必须通过统计程序加以估计固定参数:模型拟合过程中无须估计(1)为潜在变量设定的测量尺度①将潜在变量下的各观测变量的残差项方差设置为1②将潜在变量下的各观测变量的因子负荷固定为1(2)为提高模型识别度人为设定限定参数:多样本间比较(半自由参数)3、路径图(1)含义:路径分析的最有用的一个工具,用图形形式表示变量之间的各种线性关系,包括直接的和间接的关系。
(2)常用记号:①矩形框表示观测变量②圆或椭圆表示潜在变量③小的圆或椭圆,或无任何框,表示方程或测量的误差单向箭头指向指标或观测变量,表示测量误差单向箭头指向因子或潜在变量,表示内生变量未能被外生潜在变量解释的部分,是方程的误差④单向箭头连接的两个变量表示假定有因果关系,箭头由原因(外生)变量指向结果(内生)变量⑤两个变量之间连线的两端都有箭头,表示它们之间互为因果⑥弧形双箭头表示假定两个变量之间没有结构关系,但有相关关系⑦变量之间没有任何连接线,表示假定它们之间没有直接联系(3)路径系数含义:路径分析模型的回归系数,用来衡量变量之间影响程度或变量的效应大小(标准化系数、非标准化系数)类型:①反映外生变量影响内生变量的路径系数②反映内生变量影响内生变量的路径系数路径系数的下标:第一部分所指向的结果变量第二部分表示原因变量(4)效应分解①直接效应:原因变量(外生或内生变量)对结果变量(内生变量)的直接影响,大小等于原因变量到结果变量的路径系数②间接效应:原因变量通过一个或多个中介变量对结果变量所产生的影响,大小为所有从原因变量出发,通过所有中介变量结束于结果变量的路径系数乘积③总效应:原因变量对结果变量的效应总和总效应=直接效应+间接效应4、矩阵方程式(1)和(2)是测量模型方程,(3)是结构模型方程 测量模型:反映潜在变量和观测变量之间的关系 结构模型:反映潜在变量之间因果关系 5x x ξδ=∧+ (1)y y ηε=∧+ (2) B ηηξζ=+Γ+ (3)三、模型修正1、参考标准模型所得结果是适当的;所得模型的实际意义、模型变量间的实际意义和所得参数与实际假设的关系是合理的;参考多个不同的整体拟合指数;2、修正原则①省俭原则两个模型拟合度差别不大的情况下,应取两个模型中较简单的模型;拟合度差别很大,应采取拟合更好的模型,暂不考虑模型的简洁性;最后采用的模型应是用较少参数但符合实际意义,且能较好拟合数据的模型。
数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。
它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。
数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。
下面将分别介绍这些主要建模方法。
1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。
它适用于对大量数据进行分析和归纳,提取有用的信息。
数理统计法可以通过描述统计和推断统计两种方式实现。
描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。
2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。
它可以用来寻找最大值、最小值、使一些目标函数最优等问题。
最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。
这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。
3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。
这种方法适用于可以用一些基本的方程来描述的问题。
方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。
通过求解这些方程,可以得到问题的解析解或数值解。
4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。
它可以用来处理随机变量、随机过程和随机事件等问题。
概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。
利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。
5.图论方法:图论方法是研究图结构的数学理论和应用方法。
它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。
图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。
结构方程模型:定义:结构方程模型早期称为线性结构防城模型(Linear Structural Relations hips,简称LISREL)或称为工变数结构分析(Coratiance Strucyure A nalysis)。
主要目的在于检验潜在变项之关系与数个潜在变项间的因果关系。
【陈宽裕,《结构方程模型》-1996年11月】结构方程模型(Structural·Equation·Modeling,SEM)是一种非常通用的、主要的线性统计建模技术,广泛应用于经济学、心理学、社会学、管理学等领域的研究,是社会科学研究中的一个非常好的方法。
内容:结构方程模型包括测量方程(LV和MV之间关系的方程,外部关系)和结构方程(LV 之间关系的方程,内部关系),以ACSI模型为例,具体形式如下:测量方程 y=Λyη+εy , x=Λxξ+εx=(1)结构方程η=Bη+Гξ+ζ或(I-Β)η=Гξ+ζ(2)其中,η和ξ分别是内生LV和外生LV,y和x分别是和的MV,Λx和Λy是载荷矩阵,Β和Г是路径系数矩阵,ε和ζ是残差。
对这类模型进行参数估计,常使用偏最小二乘(Partial Least Square,PLS)和线性结构关系(LInear Structural RELationships,LISREL)方法。
测量方程描述潜变量与指标之间的关系;结构方程则反映潜变量之间的关系。
——【杜春雪,《结构方程模型理论的建立与应用》,大众科学·科学研究与实践,2008年第18期】SEM模式中,存在四种变量:潜在自变项、潜在依变项、X变项、Y变项。
用法:SEM 具有理论先验性能同时处理测量与分析问题以共变数的运用为核心,亦可处理平均数估计适用于大样本之分析包含了西多不同的统计技术重视多重统计指标的运用负荷量 潜在变项 观察变项 误差结构方程模型是一种非常通用的、主要的线形统计建模技术,广泛应用于心理学、经济学、社会学、行为科学等领域的研究。
数学中的模型1. 引言在数学领域中,模型被广泛应用于解决各种实际问题。
模型是数学的抽象表示,能够帮助我们理解和分析现实世界中复杂的现象。
本文将探讨数学中常见的几种模型,并介绍它们的应用领域和解决问题的方法。
2. 线性回归模型线性回归模型是一种最简单、最常见的模型,常用于建立变量之间的线性关系。
在统计学中,线性回归模型用于预测和解释变量之间的关系。
通过拟合一条直线来表示变量之间的线性关系,我们可以根据已知数据预测未知数据的值。
线性回归模型广泛应用于经济学、市场分析等领域。
3. 概率模型概率模型是研究随机变量之间关系的重要工具。
概率模型的基本思想是利用概率理论来描述和分析变量之间的不确定性。
概率模型常用于风险评估、统计推断等问题。
例如,在金融领域,概率模型被广泛应用于股票价格的预测和风险管理。
4. 离散数学模型离散数学模型是研究离散结构和离散运算的数学模型。
离散数学模型在计算机科学和信息技术中有着广泛的应用。
图论和网络优化就是离散数学模型的典型代表。
图论研究顶点和边构成的图的性质和运算规则,网络优化则研究在网络中找到最优解的问题。
5. 动态系统模型动态系统模型是研究具有时间演化规律的系统的数学模型。
动态系统模型广泛应用于物理学、生物学和工程学等领域。
通过建立微分方程或差分方程来描述系统的演化,我们可以预测未来的行为和状态。
在天气预报和经济学中,动态系统模型被用于预测和决策支持。
6. 最优化模型最优化模型是研究如何找到最佳解决方案的数学模型。
最优化模型在运筹学和管理科学中有着广泛的应用。
最优化模型可以帮助我们在众多可行解中找到最优解。
例如,在生产调度和资源分配中,最优化模型可以帮助我们最大化效益或最小化成本。
7. 结论数学中的模型是解决实际问题的有力工具。
无论是线性回归模型、概率模型、离散数学模型、动态系统模型还是最优化模型,它们都在各自的领域发挥着重要作用。
通过建立和分析模型,我们可以更好地理解和解决现实世界中的复杂问题。
结构方程模型建模思路及amos操作--基础准备概述及解释说明1. 引言1.1 概述本篇长文旨在介绍结构方程模型(Structural Equation Modeling,SEM)的建模思路及在AMOS软件中的操作流程。
结构方程模型是一种多变量统计分析方法,通过将观测变量和潜在变量结合起来建立数学模型,从而揭示背后的潜在关系和影响机制。
本文将详细解释SEM的基础概念、变量类型与测量以及模型参数估计方法。
1.2 文章结构文章主要分为五个部分。
首先,在引言中概述了本文的目标和结构。
其次,在第二部分中,我们将介绍结构方程模型的基础概念,包括对SEM的简单介绍、不同变量类型和测量方法以及常用的参数估计方法。
接下来,在第三部分中,我们将详细介绍AMOS软件,并提供相关操作准备工作,包括数据准备和输入、模型设定与修改等内容。
在第四部分中,我们将逐步解释结构方程模型的建模步骤,并阐述模型规划与理论支撑、指标选择及路径图绘制以及模型拟合评估和修正等详细内容。
最后,在第五部分中,我们将总结本研究的主要发现和启示,并提出方法的局限性和改进建议,同时展望未来的研究方向。
1.3 目的本文的目的是帮助读者全面理解结构方程模型建模思路,并能够熟练运用AMOS软件进行相应的操作。
通过具体实例和详细步骤的阐述,旨在提供一个基础准备,使读者能够在自己的研究中应用结构方程模型进行数据分析和模型测试。
同时,本文还将总结结构方程模型在研究中的应用总结与经验教训,并对其未来发展提出展望。
通过阅读本文,读者将能够更好地理解并掌握结构方程模型及其在研究领域中的价值和作用。
2. 结构方程模型基础概念:2.1 结构方程模型简介:结构方程模型(Structural Equation Modeling,简称SEM)是一种统计分析方法,被广泛应用于社会科学和心理学领域,以探索变量之间的潜在关系。
它可以同时建立观察变量与潜变量之间的关系模型,并通过拟合度指标来评估模型的适配度。
案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.图18 污水处理 【模型准备】某厂废水中含KCN, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:KCN + 2KOH + Cl 2 = KOCN + 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KOCN + KOH + Cl 2 === CO 2 + N 2 + KCl + H 2O.(注: 题目摘自福建省厦门外国语学校2008-2009学年高三第三次月考化学试卷)【模型建立】设x 1KOCN + x 2KOH + x 3Cl 2 === x 4CO 2 + x 5N 2 + x 6KCl + x 7H 2O,则1261247141527362222x x x x x x x x x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360*********x x x x x x x x x x x x x x x +−=⎧⎪+−−=⎪⎪−=⎪⎨−=⎪⎪−=⎪−=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得ans =1 2 3/2 1 1/2 3 1可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KOCN + 4KOH + 3Cl 2 === 2CO 2 + N 2 + 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s, 未知数的个数就是化学方程式中的项数n.当r(A) = n−1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A) ≤n−2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 84-85.Matlab实验题配平下列反应式(1) FeS + KMnO4 + H2SO4——K2SO4 + MnSO4 + Fe2(SO4)3 + H2O + S↓(2) Al2(SO4)3 + Na2CO3 + H2O —— Al(OH)3↓+ CO2↑+ Na2SO4。
数学建模实验答案_微分⽅程模型实验07 微分⽅程模型(2学时)(第5章微分⽅程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt=-= 其中,i (t )是第t 天病⼈在总⼈数中所占的⽐例。
k 是每个病⼈每天有效接触的平均⼈数(⽇接触率)。
i 0是初始时刻(t =0)病⼈的⽐例。
1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最⼤值,并在曲线图上标注。
提⽰:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图⽤fplot 函数,调⽤格式如下: fplot(fun,lims)fun 必须为⼀个M ⽂件的函数名或对变量x 的可执⾏字符串。
若lims取[xmin xmax],则x轴被限制在此区间上。
若lims取[xmin xmax ymin ymax],则y轴也被限制。
本题可⽤fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最⼤值⽤求解边界约束条件下的⾮线性最⼩化函数fminbnd,调⽤格式如下:x=fminbnd('fun',x1,x2)fun必须为⼀个M⽂件的函数名或对变量x的可执⾏字符串。
返回⾃变量x在区间x1本题可⽤x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指⽰最⼤值坐标⽤线性绘图函数plot,调⽤格式如下:plot(x1,y1, '颜⾊线型数据点图标', x2,y2, '颜⾊线型数据点图标',…)本题可⽤hold on; %在上⾯的同⼀张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使⽤⽂本标注函数text,调⽤格式如下:格式1text(x,y,⽂本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注⽂本在图中添加的位置。