联立方程模型的识别
- 格式:ppt
- 大小:809.00 KB
- 文档页数:7
第十二章联立方程模型的识别识别的概念:联立方程模型是由多个方程组成。
由于各个方程包含的变量之间可能存在互为因果的关系,某个方程的自变量可能是另一个方程中的因变量,所以需要对模型中的各个方程之间的关系进行严格的定义,否则联立方程模型中的系数就可能无法估计。
所以在进行模型估计之前首先要判断它是否可以估计,这就是模型的识别。
关于识别的定义:就是指由简化式参数导出结构式参数的充分必要条件。
识别一词的本意就是用来说明这种有简化式参数导出结构式参数的可能性的。
所谓统计形式,即方程中的变量与变量之间的函数关系式。
“确定的统计形式”,也就是模型中其他方程或所有方程的任意线性组合所构成的新的方程,都不再具有这种统计形式。
第一节模型的识别上述识别的定义是针对结构方程而言的。
模型中每个需要估计其参数的随机方程都存在识别问题。
如果一个模型中的所有随机方程都是可以识别的,则认为该联立方程模型是可以识别的。
反过来,如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程模型是不可识别的。
结构式模型的一般形式:;∑∑g k b Y +r X =μi =1,2,,g ij j ij j i j=1j=1…………………(12.1) 矩阵形式为:BY+ΓX=μ…………………………………… (12.2)一、 模型识别的两种含义:(1)从结构式参数和简化式参数的关系角度一个结构方程可以识别是指它的全部结构式系数可以从参数关系体系的方程组求解出。
结构方程可以识别又包含两种情况:如果求解结构参数值唯一,则称恰好识别;如果求解结构参数值不唯一,则称过度识别。
(2)从结构方程的统计形式看如果被识别方程具有确定的统计形式,则称这个结构方程可以识别,否则为不可识别。
确定的统计形式是指模型中若干个方程或全部方程以及它们的任意线性组合方程都与被识别方程含有不完全相同的变量。
只有当联立方程中每个随机结构方程都能识别,该模型才是可以识别的,否则是不可识别的。
[计量经济学讲义] 第十二章:联立方程模型的识别§1 模型识别的概念一、定义所谓识别问题,是指能否从所估计的简化式模型系数求出一个结构式方程的参数的数值估计值。
如果能够,就说该方程是可以识别的(identified );如果不能,就说所考虑的方程是不可识别的(unidentified)或不足识别的(underidentified)。
结构方程可以识别又包括两种情况:如果求解结构参数值唯一,则称恰好识别;如果求解结构参数值不唯一,则称过度识别。
二、不可识别情形 例1:需求函数:t Q =1α+2αt P +t u 1 (1.1) 供给函数:t Q =1β+2βt P +t u 2 (1.2)其简化式为:t P =1∏+t v (1.3) t Q =2∏+t w (1.4)其中1∏=2211βααβ--;2∏=222112βαβαβα--。
可以用OLS 方法估计简化式,得到简化式的两个系数1∏和2∏。
这两个系数包含了供求关系的四个系数,1α、2α、1β和2β。
但是,要估计4个未知数,仅有2个方程是不足的,因此无法确定上述四个参数。
三、恰好识别情形 例2:t Q =1α+2αt P +3αt Y +t u 1 (2.1) t Q =1β+2βt P +t u 2 (2.2)其简化式为:t P =1∏+2∏t Y +t v (2.3)t Q =3∏+4∏t Y +t w (2.4)其中1∏=2211βααβ--;2∏=223βαα--;3∏=222112βαβαβα--;4∏=2223βαβα--供给函数是可以识别的,这时因为:1β=3∏-2β1∏2β=4∏/2∏但是没有估计需求函数的唯一方法,因此需求函数仍不可识别。
例3:t Q =1α+2αt P +3αt Y +t u 1 (3.1) t Q =1β+2βt P +3β1-t P +t u 2 (3.2)其简化式为:t P =1∏+2∏t Y +3∏1-t P +t v (3.3) t Q =4∏+5∏t Y +6∏1-t P +t w (3.4)其中1∏=2211βααβ--;2∏=223βαα--;3∏=223βαβ-;4∏=222112βαβαβα--;5∏=2223βαβα--;6∏=2232βαβα-;四、过度识别情形 例4:t Q =1α+2αt P +3αt Y +4αt R +t u 1 (4.1) t Q =1β+2βt P +3β1-t P +t u 2 (4.2)其简化式为:t P =1∏+2∏t Y +3∏t R +4∏1-t P +t v (4.3) t Q =5∏+6∏t Y +7∏t R +8∏1-t P +t w (4.4)其中1∏=2211βααβ--;2∏=223βαα--;3∏=224βαα--;4∏=223βαβ-5∏=222112βαβαβα--;6∏=2223βαβα--;7∏=2224βαβα--;8∏=2232βαβα-。
§17.联立方程的识别在进行联立方程模型参数估计之前需要解决模型的识别问题。
模型识别的内容可从以下两个方面来理解,第一,从建立模型的本身来看,要求模型中的每一个方程不能有互相代替的现象,更确切是,模型中的单一方程之间是相互独立的;第二,从参数估计来看,要求利用样本资料估计出简化型参数后,通过简化型参数的估计量可以求得模型结构参数的估计量。
这些要求达到了,则说模型被识别了。
否则,模型不能识别。
所以,只有当模型中任一结构方程可识别时才能够考虑估计问题,否则会引起一系列的问题。
一、模型识别的定义为了说明模型识别的定义我们先看一个例子。
考察某农产品的供求平衡模型,农产品的需求函数可写成11110u P b b Q ++= (17-1)农产品的供应函数可写成22120u P b b Q ++= (17-2)Q 为平衡销售量,P 为农产品的价格,21,u u 为随机项。
联立(17-1)、(17-2)得到一联立方程模型。
⎩⎨⎧++=++=2212011110u P b b Q u P b b Q (17-3) 用任意常数)0( ,2121≠+λλλλ分别乘(17-1)、(17-2)两端,然后相加,经整理得 v P a a Q ++=10 (17-4) 其中 212021010λλλλ++=b b a 212121111λλλλ++=b b a 212211λλλλ++=u u v方程(2-16)称为线性组合方程,对不同的常数 ,21λλ可得不同的线性组合方程。
如果对需求函数(2-13)式进行估计得P b b Q 1110ˆˆˆ+= (2-17) 我们无法判断11ˆb 是需求函数的参数11b 的估计值,还是供给函数的参数21b 的估计值,还是线性组合方程的参数1a 的估计值。
因为需求函数(2-13)与供应函数(2-14)以及线性组合方程(2-16)具有相同的内生变量和先决变量,它们在统计形式上是无法区分的,也就是说它们的统计形式不是唯一的,所以,需求函数方程(2-13)与供应函数方程(2-14)都是不能识别的。
CWYKW tPtttGt1O300000\0y21010001100(00010容易验证该矩阵的秩为5,与整个模型w G T T Y tGt t t t1t1竹000000V1V2V2E1000000000000000),从而是可以识别的。
°202300Gt 0 0 1 0 0)联立方程计量经济学模型的识别与估计Klein于1950年建立的旨在分析美国两次世界大战间经济发展的小型宏观计量经济学模型如下:消费:c t=%+〜n t+僞耳i+〜(%+%)+%投资:人=兀+久存+侑耳1+峡1+纭工资:叫=卩0+人(Y t+T t叫丿+卩2(I1+T t1“Gt1)+泾+妆收入:Y t=C t+I t+G t T t利润:n t=y t w pt w Gt资本存量:£=—+仪i其中,Y,C,/,%,%,〃,K,G,T,t分别代表收入、消费、投资、私人工资、政府工资、利润、资本存量、政府支出、税收与时间。
1)模型的识别该模型中的内生变量共6个,分别为Y,C,I,W p,n,K,外生变量分别为为“G,G,T,t,先决变量共9个,分别为为岭1〃…,K1,W Gt,G t,Tt,t,咚1,—对于该模型的识别过程如下:对于消费方其中未包含的变量在其他方程中对应系数所组成的矩阵I Y K K w G T T Y tt t t t1Gt1t t t1t1100传0000000V10V20V1E E V31100011000010*******(1011000000)容易验证该矩阵的秩为5,与整个模型系统的内生变量减1后相等,从而是可以识别的。
另一方面,由于k心=103=7>2=31=21,因此,消费方程是过度识别的。
对于投资方程,其中未包含的变量在其他方程中对应系数所组成的矩阵为:另一方面,由于k心=103=7>1=21=9t1,因此,投资方程是过度识别的。
对于工资方程,其中未包含的变量在其他方程中对应系数所组成的矩阵为:cIn K tttt10线001B0111000010(0101容易验证该矩阵的秩为5,与整个模型系统的内生变量减1后相等,从而是可以识别的。