一元线性回归系数的两种估计方法比较
- 格式:pdf
- 大小:144.96 KB
- 文档页数:3
回归系数的估计方法-回复回归系数的估计方法是在回归分析中使用的一种统计技术。
回归分析用于研究因变量与自变量之间的关系,并且可以预测因变量的值。
回归系数是用来衡量自变量对因变量的影响程度的指标。
本文将介绍常用的回归系数估计方法,并对每个方法进行详细说明和比较。
回归系数的估计方法主要有:最小二乘法、最大似然估计和贝叶斯估计。
最小二乘法是回归分析中最常用的估计方法。
该方法的基本思想是通过最小化观测数据与回归线之间的残差平方和来估计回归系数。
残差是预测值与实际观测值之间的差异,在最小二乘法中,我们尝试找到一条回归线,使得所有观测值与该回归线的残差平方和最小。
通过最小二乘法估计的回归系数具有良好的统计性质,包括无偏性和最小方差性。
最小二乘法适用于线性回归和非线性回归模型。
最大似然估计是另一种常用的回归系数估计方法。
该方法的基本思想是找到一组回归系数,使得对观测数据的似然函数达到最大。
似然函数是描述观测数据在给定模型下出现的概率,通过最大化似然函数,我们可以得到最有可能生成观测数据的回归系数估计。
最大似然估计方法通常需要对数据的分布做出一些假设,例如正态分布假设。
与最小二乘法不同,最大似然估计方法能够提供回归系数的置信区间,用于评估回归系数的统计显著性。
贝叶斯估计是一种基于贝叶斯统计理论的回归系数估计方法。
该方法的特点是将先验分布与观测数据进行结合,得到后验分布,并且通过后验分布来估计回归系数。
在贝叶斯估计中,先验分布可以是任意的概率分布,可以通过专家知识或历史数据进行设定。
通过后验分布,我们可以得到回归系数的点估计和区间估计,并且可以对不确定性进行概括。
贝叶斯估计方法通常需要进行模型的较复杂的计算,但在面对数据不完备或先验不确定的情况下具有一定的优势。
在实际应用中,选择适合的回归系数估计方法取决于具体的问题和数据特征。
最小二乘法是一种简单直观的估计方法,适用于大多数的回归问题。
最大似然估计方法对数据的概率分布做出假设,可以提供回归系数的统计显著性。
8.2.1一元线性回归模型1.生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表1所示.编号1234567891011121314父亲身高/cm 174 170 173 169 182 172 180 172 168 166 182 173 164 180 儿子身高/cm 176 176 170 170 185 176 178 174 170 168 178 172 165 182从图上看,散点大致分布在一条直线附近根据我们学过的整理数据的方法:相关系数r =0.886.父亲身高/cm180 175 170 165 160160 165 170 175180 185 190 ·· ·· · · · 儿子身高/cm· · · · ·185 1).问题1:可以得到什么结论?由散点图的分布趋势表明儿子的身高与父亲的身高线性相关,通过相关系数可知儿子的身高与父亲的身高正线性相关,且相关程度较高.2).问题2:是否可以用函数模型来刻画?不能,因为不符合函数的定义.这其中还受其它因素的影响.3).问题3:那么影响儿子身高的其他因素是什么?影响儿子身高的因素除父亲的身外,还有母亲的身高、生活的环境、饮食习惯、营养水平、体育锻炼等随机的因素,儿子身高是父亲身高的函数的原因是存在这些随机的因素.4).问题4: 你能否考虑到这些随机因素的作用,用类似于函数的表达式,表示儿子身高与父亲身高的关系吗?用x表示父亲身高,Y表示儿子的身高,用e表示各种其它随机因素影响之和,称e为随机误差, 由于儿子身高与父亲身高线性相关,所以Y=bx+a.考虑随机误差后,儿子的身高可以表示为:Y=bx+a+e由于随机误差表示大量已知和未知的各种影响之和,它们会相互抵消,为使问题简洁,可假设随机误差e的均值为0,方差为与父亲身高无关的定值 . 2σ2即E e D eσ:()0,().==我们称①式为Y 关于x 的一元线性回归模型,其中,Y 称为因变量或响应变量,x 称为自变量或解释变量 . a 称为截距参数,b 称为斜率参数;e 是Y 与bx+a 之间的随机误差.2,()0,().Y bx a e E e D e σ=++⎧⎨==⎩① 2、一元线性回归模型如果用x 表示父亲身高,Y 表示儿子的身高,e 表示随机误差.假定随机误差e 的均值为0,方差为与父亲身高无关的定值 ,则它们之间的关系可以表示为2σ4.问题5:你能结合具体实例解释产生模型①中随机误差项的原因吗?产生随机误差e的原因有:(1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等.(2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差.(3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似关系也是产生随机误差e的原因.8.2.2一元线性回归模型参数的最小二乘法估计二、自主探究问题1.为了研究两个变量之间的相关关系, 我们建立了一元线性回归模型表达式 刻画的是变量Y 与变量x 之间的线性相关关系,其中参数a 和b 未知,我们如何通过样本数据估计参数a 和b?2,()0,().Y bx a e E e D e σ=++⎧⎨==⎩问题2.我们怎样寻找一条“最好”的直线,使得表示成对样本数据的这些散点在整体上与这条直线最“接近”?从成对样本数据出发,用数学的方法刻画“从整体上看,各散点与蓝色直线最接近”利用点到直线y=bx+a 的“距离”来刻画散点与该直线的接近程度,然后用所有“距离”之和刻画所有样本观测数据与该直线的接近程度.父亲身高/cm180 175 170 165 160160 165 170 175180 185 190 ·· ·· · · · 儿子身高/cm· · · · ·185 父亲身高/cm180 175 170 165 160160 165 170 175 180 185 190·· ·· · · · 儿子身高/cm· · · · ·185设满足一元线性回归模型的两个变量的n 对样本数据为(x 1,y 1),(x 2,y 2),…,(x n ,y n )父亲身高/cm180 175170165 160160165 170 175 180 185 190·· · · · · · 儿子身高/cm· ·· · · 185()()(1,2,3,,-).i i i i i i i i i i i y bx a e i n y bx a e e x y x bx a =++=⋅⋅⋅+=+由),得(显然越小,表示点,与点,的距离越小,()0,.i i i x y =即样本数据点离直线y=bx+a 的竖直距离越小,如上图特别地,当e 时,表示点在这条直线上1-)ni i i y bx a =+∑因此可用(来刻画各样本观测数据与直线y=bx+a 的整体接近程度.()iix y ,y=bx+a()i i x bx a +,·[]21(,)()ni i i Q a b y bx a ==-+∑残差平方和: 即求a ,b 的值,使Q ( a ,b )最小残差:实际值与估计值之间的差值,即 使Q 取得最小值,当且仅当b 的取值为121()()()nii i nii xx y y b xx ==--=-∑∑b.,ˆ,ˆ的最小二乘估计叫做求得a b a b(,).x y 经验回顾直线必经过的符号相同与相关系数r b ˆ最小二乘法我们将 称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫最小二乘法.ˆˆˆy bxa =+12111=i ni n22i ni n x x y y ˆb ,x x ˆˆa x y x y x xy b .i i i i i i ΣΣx )n ΣΣ(()()n ====⎧--⎪=⎪⎨-⎪⎪--=⎩-问题2:依据用最小二乘估计一元线性回归模型参数的公式,求出儿子身高Y 关于父亲身高x 的经验回归方程.儿子的身高不一定会是177cm ,这是因为还有其他影响儿子身高的因素,回归模型中的随机误差清楚地表达了这种影响,父亲的身高不能完全决定儿子的身高,不过,我们可以作出推测,当父亲的身高为176cm 时,儿子身高一般在177cm 左右.当x=176时, ,如果一位父亲身高为176cm,他儿子长大后身高一定能长到177cm 吗?为什么?177y ≈083928957ˆy .x .=+的意义?∧b残差的定义,e a bx Y ++=一元线性回归模型,,Y y 对于通过观测得响应到的数据称量为变观测值ˆ,y通过经验回归方程得到称为预报值的ˆ.ˆey y =-残观测值减去预报值称为即差判断模型拟合的效果:残差分析问题3:儿子身高与父亲身高的关系,运用残差分析所得的一元线性回归模型的有效性吗?残差图:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据或体重估计值等,这样作出的图形称为残差图.从上面的残差图可以看出,残差有正有负,残差点比较均匀地分布在横轴的两边,可以判断样本数据基本满足一元线性回归模型对于随机误差的假设.所以,通过观察残差图可以直观判断样本数据是否满足一元线性回归模型的假设,从而判断回归模型拟合的有效性.所以,只有图(4)满足一元线性回归模型对随机误差的假设图(1)显示残差与观测时间有线性关系,应将时间变量纳入模型; 图(2)显示残差与观测时间有非线性关系,应在模型中加入时间的非线性函数部分; 图(3)说明残差的方差不是一个常数,随观测时间变大而变大图(4)的残差比较均匀地集中在以横轴为对称轴的水平带状区域内.根据一元线性回归模型中对随机误差的假定,残差应是均值为0,方差为 的随机变量的观测值.2σ观察以下四幅残差图,你认为哪一个残差满足一元线性回归模型中对随机误差的假定?1.残差等于观测值减预测值2.残差的平方和越小越好;3.原始数据中的可疑数据往往是残差绝对值过大的数据;4. 对数据刻画效果比较好的残差图特征:残差点比较均匀的集中在水平带状区域内.归纳小结(残差图中带状越窄,精度越高)1.关于残差图的描述错误的是( )A.残差图的横坐标可以是样本编号B.残差图的横坐标也可以是解释变量或预报变量C.残差点分布的带状区域的宽度越窄相关指数越小D.残差点分布的带状区域的宽度越窄残差平方和越小C 三、巩固提升2.根据如下样本数据:得到的经验回归方程为 ,则( ) A. >0, >0B. >0, <0C. <0, >0D. <0, <0 x 2 3 4 5 6 Y42.5-0.5-2-3a $a $a $a$$b $b$b$b $$ybx a =+$ B3.某种产品的广告支出费用x(单位:万元)与销售额Y(单位:万元)的数据如表:已知Y 关于x 的经验回归方程为 =6.5x+17.5,则当广告支 出费用为5万元时,残差为________. x 2 4 5 6 8Y 30 40 60 50 70$y当x=5时, =6.5×5+17.5=50,表格中对应y=60,于是残差为60-50=10.$y10一元线性回归模型的应用例1.经验表明,对于同一树种,一般树的胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.由于测量树高比测量胸径困难,因此研究人员希望由胸径预测树高.在研究树高与胸径之间的关系时,某林场收集了某种树的一些数据如下表所示,试根据这些数据建立树高关于胸径的经验回归方程.编号 1 2 3 4 5 6胸径/cm 18.1 20.1 22.2 24.4 26.0 28.3树高/m 18.8 19.2 21.0 21.0 22.1 22.1编号7 8 9 10 11 12胸径/cm 29.6 32.4 33.7 35.7 38.3 40.2树高/m 22.4 22.6 23.0 24.3 23.9 24.7dh· · ·· · · · · · · · · 解: 以胸径为横坐标,树高为纵坐标作散点图如下:散点大致分布在一条从左下角到右上角的直线附近,表明两个变量线性相关,并且是正相关,因此可以用一元线性回归模型刻画树高与胸径之间的关系.0.249314.84h d =+··· ·· · · · · · · · 用d 表示胸径,h 表示树高,根据据最小二乘法,计算可得经验回归方程为0.249314.84h d =+根据经验回归方程,由胸径的数据可以计算出树高的预测值(精确到0.1)以及相应的残差,如下表所示.编号胸径/cm 树高观测值/m 树高预测值/m 残差/m1 18.1 18.8 19.4 -0.62 20.1 19.2 19.9 -0.73 22.2 21.0 20.4 0.64 24.4 21.0 20.9 0.15 26.0 22.1 21.3 0.86 28.3 22.1 21.9 0.27 29.6 22.4 22.2 0.28 32.4 22.6 22.9 -0.39 33.7 23.0 23.2 -0.210 35.7 24.3 23.7 0.611 38.3 23.9 24.4 -0.512 40.2 24.7 24.9 -0.2以胸径为横坐标,残差为纵坐标,作残差图,得到下图.30252015-1.0-0.5 0.0 0.5 1.0· · · · · · · 残差/m· · · ·· 354045胸径/cm观察残差表和残差图,可以看到残差的绝对值最大是0.8,所有残差分布在以横轴为对称轴、宽度小于2的带状区域内 .可见经验回归方程较好地刻画了树高与胸径的关系,我们可以根据经验回归方程由胸径预测树高.编号1 2 3 4 5 6 7 8 年份 1896 1912 1921 1930 1936 1956 1960 1968 记录/s 11.8010.6010.4010.3010.2010.1010.009.95例2.人们常将男子短跑100m 的高水平运动员称为“百米飞人”.下表给出了1968年之前男子短跑100m 世界纪录产生的年份和世界纪录的数据.试依据这些成对数据,建立男子短跑100m 世界纪录关于纪录产生年份的经验回归方程以成对数据中的世界纪录产生年份为横坐标,世界纪录为纵坐标作散点图,得到下图在左图中,散点看上去大致分布在一条直线附近,似乎可用一元线性回归模型建立经验回归方程.将经验回归直线叠加到散点图,得到下图:76913031.4902033743.0ˆ1+-=t y用Y 表示男子短跑100m 的世界纪录,t 表示纪录产生的年份 ,利用一元线性回归模型来刻画世界纪录和世界纪录产生年份之间的关系 . 根据最小二乘法,由表中的数据得到经验回归方程为:从图中可以看到,经验回归方程较好地刻画了散点的变化趋势,请再仔细观察图形,你能看出其中存在的问题吗?你能对模型进行修改,以使其更好地反映散点的分布特征吗?仔细观察右图,可以发现散点更趋向于落在中间下凸且递减的某条曲线附近.回顾已有的函数知识,可以发现函数y=-lnx的图象具有类似的形状特征注意到100m短跑的第一个世界纪录产生于1896年, 因此可以认为散点是集中在曲线y=f(t)=c1+c2ln(t-1895)的周围,其中c1、c2为未知参数,且c2<0.y=f(t)=c1+c2ln(t-1895)这是一个非线性经验回归函数,如何利用成对数据估计参数c1、c2令x=ln(t-1895),则Y=c2x+c1对数据进行变化可得下表:编号 1 2 3 4 5 6 7 8 年份/t 1896 1912 1921 1930 1936 1956 1960 1968 x 0.00 2.83 3.26 3.56 3.71 4.11 4.17 4.29 记录/s 11.80 10.60 10.40 10.30 10.20 10.10 10.00 9.95将x=ln(t-1895)代入:得 8012653.114264398.0ˆ2+-=x y上图表明,经验回归方程对于成对数据具有非常好的拟合精度.将经验回归直线叠加到散点图,得到下图: 8012653.114264398.0ˆ2+-=x y8012653.11)1895ln(4264398.0ˆ2+--=t y经验回归方程为对于通过创纪录时间预报世界纪录的问题,我们建立了两个回归模型,得到了两个回归方程,你能判断哪个回归方程拟合的精度更好吗?8012653.114264398.0ˆ2+-=x y① 2ˆ0.4264398ln(1895)11.8012653y t =--+② 我们发现,散点图中各散点都非常靠近②的图象, 表明非线性经验回归方程②对于原始数据的拟合效果远远好于经验回归方程①.(1).直接观察法.在同一坐标系中画出成对数据散点图、非线性经验回归方程②的图象(蓝色)以及经验回归方程①的图象(红色).28212811ˆ,ˆQ Q (()0.004)0.669i i i i eu ===≈=≈∑∑8012653.114264398.0ˆ2+-=x y① 2ˆ0.4264398ln(1895)11.8012653yt =--+②(2).残差分析:残差平方和越小,模型拟合效果越好.Q 2明显小于Q 1,说明非线性回归方程的拟合效果 要优于线性回归方程.R 2越大,表示残差平方和越小,即模型的拟合效果越好 R 2越小,表示残差平方和越大,即模型的拟合效果越差. 21212ˆ()11()n i i nii i y y y y R ==-=-=--∑∑残差平方和。
一元回归模型的参数估计思政一元回归模型是统计学中常用的模型之一,用于研究两个变量之间的关系。
在参数估计方面,我们需要通过样本数据来估计模型中的参数,从而得到一个可靠的模型来描述变量之间的关系。
在进行一元回归模型的参数估计时,我们首先需要收集样本数据。
这些数据应该包括两个变量:自变量和因变量。
自变量是我们希望通过来预测因变量的变量,而因变量是我们希望解释或预测的变量。
接下来,我们可以使用最小二乘法来估计一元回归模型的参数。
最小二乘法是一种常用的参数估计方法,它的目标是使观测值与模型预测值之间的差异最小化。
在最小二乘法中,我们需要计算出模型的预测值和观测值之间的差异,这个差异被称为残差。
我们的目标是使所有观测值的残差的平方和最小化。
为了达到这个目标,我们需要对模型中的参数进行估计。
在一元回归模型中,我们需要估计两个参数:截距和斜率。
截距代表了当自变量为0时,因变量的取值;斜率代表了自变量每增加一个单位时,因变量的变化。
通过最小二乘法,我们可以得到一组估计的参数值,这些参数值可以用于构建回归模型。
这个回归模型可以用来预测未来的因变量取值,或者解释自变量对因变量的影响。
在进行一元回归模型的参数估计时,我们需要注意一些问题。
首先,我们需要确保样本数据的质量和数量足够,以保证参数估计的准确性。
其次,我们需要检验模型的拟合程度,以确定模型是否能够很好地解释观测数据。
一元回归模型的参数估计是一项重要的统计学方法,它可以帮助我们了解变量之间的关系,并进行预测和解释。
通过合理的样本数据和最小二乘法的运用,我们可以得到可靠的参数估计结果,从而构建出有效的回归模型。
这对于各个领域的研究和决策都具有重要的意义。
一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。