第3章 一元线性回归分析
- 格式:ppt
- 大小:753.50 KB
- 文档页数:40
第三章 一元线性回归模型一、预备知识(一)相关概念对于一个双变量总体,若由基础理论,变量和变量之间存在因果),(i i x y x y 关系,或的变异可用来解释的变异。
为检验两变量间因果关系是否存在、x y 度量自变量对因变量影响的强弱与显著性以及利用解释变量去预测因变量x y x ,引入一元回归分析这一工具。
y 将给定条件下的均值i x i yi i i x x y E 10)|(ββ+=(3.1)定义为总体回归函数(PopulationRegressionFunction,PRF )。
定义为误差项(errorterm ),记为,即,这样)|(i i i x y E y -i μ)|(i i i i x y E y -=μ,或i i i i x y E y μ+=)|(i i i x y μββ++=10(3.2)(3.2)式称为总体回归模型或者随机总体回归函数。
其中,称为解释变量x (explanatory variable )或自变量(independent variable );称为被解释y 变量(explained variable )或因变量(dependent variable );误差项解释μ了因变量的变动中不能完全被自变量所解释的部分。
误差项的构成包括以下四个部分:(1)未纳入模型变量的影响(2)数据的测量误差(3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系(4)纯随机和不可预料的事件。
在总体回归模型(3.2)中参数是未知的,是不可观察的,统计计10,ββi μ量分析的目标之一就是估计模型的未知参数。
给定一组随机样本,对(3.1)式进行估计,若的估计量分别记n i y x i i ,,2,1),,( =10,),|(ββi i x y E 为,则定义3.3式为样本回归函数^1^0^,,ββi y ()i i x y ^1^0^ββ+=n i ,,2,1 =(3.3)注意,样本回归函数随着样本的不同而不同,也就是说是随机变量,^1^0,ββ它们的随机性是由于的随机性(同一个可能对应不同的)与的变异共i y i x i y x 同引起的。
回归分析(一元)一、实验目的掌握回归分析的步骤及操作。
二、相关理论知识1.回归分析的步骤: 首先,进行相关分析。
具体应先从定性角度分析变量之间有无相关关系;若存在相关关系,在借助散点图,相关系数等方式,进一步确定相关关系的类型及相关程度,为建立回归模型提供依据。
接下来,以相关分析为基础,进行回归分析。
2.流程框架3.一元线性回归模型的基本形式为:i i i X Y μββ++=10 n i ,,2,1 =4.参数估计方法:最小二乘法最小二乘法通过使残差项的平方和最小来估计参数0β和1β。
即∑2i e 最小。
求出0β、1β的估计值为:21)())((i i i i i i X X Y Y X X -∑--∑=∧β,i i X Y 10∧∧-=ββ三、实验内容及要求1、实验内容:(1)散点图、相关系数; (2)参数估计及结果解读; 2、实验要求:掌握相关分析及回归分析的操作及结果解读四、操作指导(一)相关分析 1.散点图绘制利用我国1978年——2001年国内生产总值和最终消费支出的数据。
经济学的理论可以证明,国内生产总值和最终消费支出之间存在关联。
在此基础上,绘制散点图。
第一步,同时选中x ,y 两个序列,点击右键,选择open 级联菜单as group 。
(注意:在选中两个序列时,先选择哪个,打开组后哪个就在前面,作图时默认它就是横轴的变量)第二步,在group窗口,点击view下拉菜单,选择graph——scatter,点确定。
见图1图1表明两者具有很强的线性相关关系。
2.简单相关系数的计算在group窗口选择view下拉菜单中的covariance analysis,将correlation选中,同时将covariance复选框中的√去掉。
然后确定,即可得x和y的简单相关系数矩阵,见图2:图2结果显示x和y之间的简单相关系数为0.999373,两者之间存在高度正线性相关关系。
可建立一元线性回归模型。
一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
一元线性回归分析的原理
一元线性回归分析是一种用于研究变量之间相互关系的统计分析方法。
它旨在
在一组数据中,以一个线性方程的式子去拟合变量之间的关系。
借此,分析一个独立变量(即自变量)和一个取决变量(即因变量)之间的关系,求出最合适的回归系数。
一元线性回归分析可以用来发现和描述变量之间的复杂方程式,用来估计参数,以及构建预测模型。
具体而言,一元线性回归分析指的是自变量和因变量之间有线性关系的回归分析。
也就是说,自变量和因变量均遵从一元线性方程,也就是y=βx+α,其中y
为因变量,x为自变量,β为系数,α为常数。
通过一元线性回归分析可以精确
的定义出变量之间的关系,从而可以得出最佳的回归系数和常数,并估计每个参数。
一元线性回归分析用于研究很多方面,例如决策科学、经济学和政治学等领域。
例如,在政治学研究中,可以使用一元线性回归分析来分析政府的软性政策是否能够促进社会发展,以及社会福利是否会影响民众的投票行为。
在经济学研究中,则可以使用一元线性回归分析来检验价格是否会影响消费水平,或检验工资水平是否会影响经济增长率等。
总结而言,一元线性回归分析是一种有效的研究变量之间关系的统计分析方法,精确地检验独立变量和取决变量之间的关系,从而求得最合适的回归系数和常数,并用该回归方程式构建预测模型,为决策提供参考。
一元线性回归分析的作用方法步骤一元线性回归分析是一种用来探究两个变量之间关系的统计方法。
它基于一个假设,即两个变量之间存在线性关系。
以下是一元线性回归分析的一般步骤:1. 数据收集:首先,需要收集所需的数据。
需要考虑收集的数据是否与研究目的相关,并确保数据的准确性和完整性。
2. 变量定义:定义自变量和因变量。
自变量是用来预测因变量的变量,而因变量是我们想要预测或解释的变量。
3. 数据探索:进行数据探索,包括数据的描述性统计和绘图。
这一步可以帮助我们了解数据的分布、异常值和离群点。
4. 模型选择:选择适当的线性模型。
这可以通过查看散点图、相关性分析和领域知识来完成。
通常,一个线性模型可以用以下方程表示:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
5. 模型估计:使用最小二乘法来估计回归系数。
最小二乘法的目标是找到最佳拟合直线,使得预测值与实际值之间的残差平方和最小化。
6. 模型评估:评估模型的拟合优度。
常用的指标包括R平方值和调整R平方值。
R平方值介于0和1之间,表示因变量变异性的百分比可以由自变量解释。
调整R平方值是对R平方值的修正,考虑了自变量的数量和样本量。
7. 模型解释:根据回归系数的估计值,解释自变量对因变量的影响。
根据回归系数的正负和大小,可以确定变量之间的关系是正向还是负向,并量化这种关系的强度。
8. 结果验证:验证模型的有效性和稳健性。
这可以通过对新数据集的预测进行测试,或使用交叉验证的方法来完成。
9. 结果解释:对模型结果进行解释,提供有关回归系数的结论,并解释模型对现实世界问题的意义。
总结来说,一元线性回归分析的方法步骤包括数据收集、变量定义、数据探索、模型选择、模型估计、模型评估、模型解释、结果验证和结果解释。
它们相互关联,构成了一元线性回归分析的完整过程。
一、一元线性回归(一)基本公式如果预测对象与主要影响因素之间存在线性关系,将预测对象作为因变量y,将主要影响因素作为自变量x,即引起因变量y变化的变量,则它们之间的关系可以用一元回归模型表示为如下形式:y=a+bx+e其中:a和b是揭示x和y之间关系的系数,a为回归常数,b为回归系数e是误差项或称回归余项。
对于每组可以观察到的变量x,y的数值xi,yi,满足下面的关系:yi =a+bxi+ei其中ei是误差项,是用a+bxi去估计因变量yi的值而产生的误差。
在实际预测中,ei是无法预测的,回归预测是借助a+bxi得到预测对象的估计值yi。
为了确定a和b,从而揭示变量y与x之间的关系,公式可以表示为:y=a+bx公式y=a+bx是式y=a+bx+e的拟合曲线。
可以利用普通最小二乘法原理(ols)求出回归系数。
最小二乘法基本原则是对于确定的方程,使观察值对估算值偏差的平方和最小。
由此求得的回归系数为:b=[∑xiyi—x∑yi]/∑xi2—x∑xia=-b式中:xi、yi分别是自变量x和因变量y的观察值,、分别为x和y的平均值.=∑xi/ n ; = ∑yi/ n对于每一个自变量的数值,都有拟合值:yi’=a+bxiyi’与实际观察值的差,便是残差项ei=yi一yi’(二)一元回归流程三)回归检验在利用回归模型进行预测时,需要对回归系数、回归方程进行检验,以判定预测模型的合理性和适用性。
检验方法有方差分析、相关检验、t检验、f检验。
对于一元回归,相关检验与t检验、f检验的效果是等同的,因此,在一般情况下,通过其中一项检验就可以了。
对于多元回归分析,t检验与f检验的作用却有很大的差异。
1.方差分析通过推导,可以得出:∑(yi—y-)2= ∑(yi—yi’)2+∑(yi—y-)2其中:∑(yi—y-)2=tss,称为偏差平方和,反映了n个y值的分散程度,又称总变差。
∑(yi—yi’)2=rss,称为回归平方和,反映了x对y线性影响的大小,又称可解释变差。
一元线性回归模型案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。