2.6两点的相对位置及重影点
- 格式:ppt
- 大小:257.51 KB
- 文档页数:7
第三讲点的投影(50 分钟)(一)教学内容:1.点在两投影面体系中的投影2. 点在三投影面体系中的投影3. 两点的相对位置和重影点(二)目的与要求1.掌握点在三投影面体系中的投影规律以及由点的两投影求作第三投影的要领;2.掌握根据点的投影,判断其空间位置(包括两点的相对位置)的方法。
(三)讲课提纲及其说明一、点在两投影面体系中的投影(15 分钟)1、投影面体系的建立如图1 所示,设立互相垂直的两个投影面,正立投影面(简称正面)V 和水平投影面(简称水平面)H ,构成两投影面体系。
两投影面体系将空间划分为四个分角。
本书只讲述物体在第一分角的投影。
V 面和H 面的交线称为投影轴OX。
2. 点的两面投影如图1 (a)所示,由空间点A作垂直于V面、H面的投射线Aa'、Aa,分别与V面、H面相交,交点即为A的正面投影(V面投影)a‘和水平投影(H面投影)a,即点A的两面投影。
空间点用大写字母如A、B、C、…表示,其水平投影用相应的小写字母如a、b、c、…表示,正面投影用相应的小写字母加一撇如a' b ' c'… 表示。
为使点的两面投影画在同一平面上,需将投影面展开。
展开时V面保持不动,将H面绕0X轴向下旋转90 °,与V面展成一个平面,便得到点A的两面投影图,如图1(b)所示。
投影图上的细实线aa '称为投影连线。
在实际画图时,不必画出投影面的边框和点a x,图1(c)即为点A的投影图。
3. 点的两面投影规律空间三点A、a'、a构成一个平面,由于平面Aa a分别与V面,H面垂直,所以这三个相互垂直的平面必定交于一点a x,且a x a'QX、aa x丄OX。
当H面与V面展平后,a、a x、a'三点必共线,即aa '_OX。
又因Aaa x a '是矩形,所以a x a'=Aa , a x a=Aa '。
《机械制图》(第六版)习题集答案第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
【教学内容与过程设计】教学内容过程设计一、点在一个投影面上的投影图1 图2过空间点A向投影面H 引垂线,得到的垂足a即为空间点A在H面上的正投影,见图1。
在投影线任取一点B,,其在H面上的投影与A的投影重合。
结论:在一定的投影条件下,空间一点有其唯一确定的投影,投影a 有无数个空间与其对应。
二、点在两投影面体系中的投影引入:点在一个投影面上的投影能不能确定点的空间位置?(图2)如何解决?——增加投影面。
1、两投影面体系(图3)在图1的基础上再增加一个投影面,处于正面直立位置且与H面相互垂直,这样就建立两投影面体系。
水平投影面——H面;正面投影面——V面;OX投影轴。
图3 图4 ★黑板上画出空间示意图(由图1逐步演变为图3)。
点对一个投影面的投影(图1)点在两投影面体系中的投影(图3)点在三投影面体系中的投影(图5)2、空间点A在两个投影面上的投影(图3)过空间点A分别向H、V面引垂线,得到的垂足a、a'分别为空间点A在H-V两面投影体系中的投影。
A —空间点;a—点A的水平投影;a'—点A的正面投影;3、投影面的展开(图3)为了方便表达,需要将两个相互垂直的投影面展开到同一平面内。
规定:V面保持不动,H面向下旋转90°,使得H面和V面处于同一平面内,从而得到点的两面投影图。
注意:a、a'、a x三点共线,并且垂直OX轴。
4、点的两面投影规律①a'a⊥OX轴,点的水平投影与正面投影的连线垂直于OX轴;②aa x =A a',a'a x=A a,点的水平投影到X轴距离反映该点到V面距离,点的正面投影到X轴距离反映该点到H面距离。
注意:给了点的水平投影和正面投影就可确定该点的空间位置,同样给了一个空间点就有唯一一组水平投影和正面投影与其对应。
A (a,a')三、点在三投影面体系中的投影引入:点的两面投影已经能确定该点的空间位置,但为更清楚地表达某些几何体的形状和结构,需采用三面投影图。
《机械制图》(第六版)习题集答案第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A (25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
点、直线和平面的投影教学目的要求:1.点的投影及作图.2.各种位置直线的投影,及两直线的相对位置.3.直角三角形法求直线的实长和倾角,直角定理.4.各种位置平面的投影,平面上取点取线的作图.教学重点难点:1.各种位置直线的投影.2.各种位置平面的投影.3.平面上取点取线的作图.学时: 3§ 1点的投影1.1点的三面投影本节教学目标:点在第一分角中各种位置的投影特性和作图方法。
重点:点在两投影面体系及三投影面体系中的投影,两点的相对位置及重影点的投影。
难点:重影点的投影。
引入:点是最基本的几何元素,以此来分析点在空间中的位置关系及规律。
1.1.1三面投影的规律点的三面投影:水平投影 a → H正面投影 a´→ V侧面投影 a″→ W点的三面投影规律:a′a ⊥ oxa′a″⊥ oza aх =a″az1.1.2点的投影与坐标的关系一、三投影面体系中点的投影A a = a′ax = a″ay = 高标(Z标)A a′= a ax = a″az = 纵标(Y标)A a″= a′az = aay = 横标(X标)V、H 投影反映XV、W 投影反映ZH、W 投影反映Y1.点在三投影面体系中的投影空间点 A的位置确定后,那么它的三面投影( a、a′、 a″)投影就确定了,反之如果空间一点的三面投影确定,则空间点的位置也就确定。
2.术语及规定习惯上我们将空间点用大写的字母表示,其投影用相应的小写字母表示。
3.投影性质点的两投影的连线垂直于相应的投影轴;点的投影到投影轴的距离反映空间点到投影面的距离。
二、特殊位置点的投影1.其他分角内的点两投影面体系——四分角;三投影面体系——八分角。
2.其他情况投影面上的点的投影关系;投影轴上的点的投影关系1.2两点的相对位置和重影点1.2.1两点的相对位置根据两点相对于投影面的坐标不同,即可确定两点的相对位置。
XA<XB B点在A左方 YA>YB B点在A点后方 ZA>ZB B点在A点下方例:比较三棱锥四个顶点S、A、B、C的位置。
《点的投影》教案教学过程复习提问(5分钟)1、三视图的三等关系是如何叙述的?2、三投影面体系中各个平面的代号分别是什么?导入新课(2分钟)点、线、面是构成物体形状的基本几何元素。
学习和掌握它们的投影特性和规律,能够透彻理解园林图样所表达的内容。
讲授新课(35分钟)§3-1点的投影一、点在三面投影体系中的投影1.三面投影体系的建立在V、H两面的基础上再增加一个右侧立面,使之与V、H相互垂直,此面以W 表示,称W面。
这样V、H、W互相垂直,组成一个三投影面体系。
V、H面的交线称X轴;V、W面的交线称Z轴;H、W面的交线称Y轴。
X、Y、Z三轴的交点O称为投影原点。
2.点在三面投影体系中的投影设有一空间点A、分别向H、V、W进行投影的a,a′,a″。
a″称为A点的侧面投影。
摊平时,设V面不动,H向下转90°,W面向右后转90°,Y轴随H的以Y H表示,随W的以Y W表示。
省略投影面边界。
3.点在V、H、W中的投影规律(1)、点的正面投影和水平投影均反映空间点的X坐标,所以点的正面投影和水平投影的连线垂直X轴,即a′a⊥X轴;(2、点的正面投影和侧面投影均反映空间点的Z坐标,所以点的正面投影和侧面投影的连线垂直Z轴,即a′a″⊥Z轴;(3)、点的水平投影和侧面投影均反映空间点的Y坐标,所以点的水平投影到X轴的距离等于侧面投影到Z轴的距离,即aa X=a″a Z。
根据两点相对于投影面的坐标不同,即可确定两点的相对位置。
XA<XB B点在A左方YA>YB B点在A点后方教学过程设计4.点的投影与直角坐标的关系把三面投影体系看作为空间直角坐标体系,则H、V、W面为坐标面,X、Y、Z 轴为坐标轴,原点O为坐标原点。
如上图,空间点A的三个直角坐标X A、Y A、Z A即为A点到三个坐标面的距离,它们与A点的投影a,a′,a″的关系如下:Aa″=aa y=a x o=a′a z=X A;Aa′=aa x=a Y o=a″a z=Y A;Aa=a′a X=a Z o=a″a Y=Z A。