第四章动力学基础
- 格式:ppt
- 大小:821.50 KB
- 文档页数:3
第四章 化学动力学基础1. 某基元反应A+2B −→−k 2P ,试分别用各种物质随时间的变化率表示反应的速率方程式。
解:()1()1()22dc A dc B dc P r dt dt dt =-=-=2. 对反应A —→P ,当反应物反应掉43所需时间是它反应掉21所需时间的3倍,该反应是几级反应?请用计算式说明。
解: 设为a 初始浓度,x 为t 时刻的产物浓度对于零级反应0xt k =3412334122t t ==对于一级反应11lna t k a x =- 34121ln 31421ln112t t -==-对于二级反应 2111t k a x a ⎛⎫=- ⎪-⎝⎭34121131431112t t --==--或者:先假设此反应为二级反应,则有:1100002200012111131/4111111/23kt kt t C C C C kC kt kt t C C C C kC t t -=-==-=-=== 答:该反应是二级反应。
3. 试证明一级反应的转化率分别达50%、75%和87.5%,所需时间分别是2/1t 、22/1t 、32/1t 。
证:设为y 转化率对于一级反应211ln1t k y =-11ln 2t k = 当y=50%时122111ln 2ln 150%t t k k ===-当y=75%时1221112ln 2ln 2175%t t k k ===-当y=87.5%时 1221113ln 2ln 3187.5%t t k k ===-证毕。
4. 若某一反应进行完全所需时间是有限的,且等于c o /k (c o 为反应物起始浓度),该反应为几级反应? 答:观察零级、一级、二级和三级反应的速率公式的定积分公式,反应进行完全时,x=a ,只有零级反应符合0a t k =即0ct k =,所以该反应是零级反应。
5. 某总反应速率常数k 与各基元反应速率常数的关系为k = k 2(k 1/2k 4)1/2,则该反应的表观活化能和指前因子与各基元反应活化能和指前因子的关系如何?答: a E RTk Ae-=ln ln aE k A RT ∴=-(1)121242 k k k k ⎛⎫= ⎪⎝⎭ 2141ln ln (ln ln 2ln )2k k k k ∴=+-- (2)214214214212142142142141ln ln ln ln 2ln 21111ln ln ln 2ln 222221111(ln ln ln 2ln )()22222111[ln (ln ln 2ln )](22a a a aa a a a a a a a E E E E A A A A RT RT RT RT E E E A A A RT RT RTE E E A A A RT RT RT A A A E E RT ⎡⎤⎛⎫⎛⎫-=-+----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦=-+---+=+---+-=+---+41)2a E -121214241ln ln (ln ln 2ln )ln 22A A A A A A A ⎛⎫∴=+--= ⎪⎝⎭ 即 121242 A A A A ⎛⎫= ⎪⎝⎭ 2141122a a a a E E E E =+-6. 反应CH 3CHO = CH 4 + CO 其E a 值为190 kJ mol -1,设加入I 2(g )(催化剂)以后,活化能E a 降为136 kJ mol -1,设加入催化剂前后指数前因子A 值保持不变,则在773K 时,加入I 2(g )后反应速率常数k '是原来k 值的多少倍?(即求k '/k 值)。
第四章地球化学动力学基础4.1 引言在地球化学研究领域中,热力学理论和方法的运用已经取得了丰富的成果,平衡热力学方法已经成为人们认识地球的化学结构和化学演化的重要手段之一。
然而,地球化学过程通常极其缓慢,以致一些自然体系可能没有达到平衡。
大量的野外观察资料和新的实验结果都充分地证明了这一观点。
例如下述这些自然体系的研究结果:(1)单一物相内部化学成分的变化;(2)矿物晶体中的成分分带;(3)矿物组合中的反应边结构;(4)不平衡的矿物组合;(5)矿物晶体的出溶作用;(6)晶体的有序—无序结构和晶体缺陷等等。
这些自然体系均显示对热力学平衡态的偏离。
如何解释这些自然体系并且准确地描述这些自然体系的演化过程便成为地球化学研究的重要课题。
平衡热力学理论方法之所以不能完全解决这些问题,是因为上述自然体系的演化过程是路径相关的,因而也是时间相关的。
而平衡热力学方法仅考虑体系的状态参量和状态函数,由此讨论体系的演化方向,是路径无关的。
研究自然体系的化学演化具有两个含义:(1)研究体系由平衡的起始状态Ⅰ演变到新的条件下的平衡的终了状态Ⅱ,其结果用状态函数的变化量△H,△S,△G等来表示;(2)研究体系演化的路径,这是时间相关的问题。
如果自然体系均是平衡的,则我们无法确定体系演化的路径,即自然体系的演化过程被平衡的终了态掩蔽了。
反之,大量自然体系的不平衡特征恰好成为自然体系演化路径的记录,有助于我们探讨自然体系化学演化的历程。
例如对于晶体生长过程的认识正是来自晶体的各种缺陷,火成岩中某些矿物相出现顺序的颠倒、一些矿物组合中相律的不适用性等现象都将成为这些体系演化过程的记录。
因此,为了解决这些路径相关的自然体系演化的问题,则必然要在讨论体系演化过程的时候引入速率的概念,进行演化过程的动力学研究。
由于自然体系演化过程的复杂性,在引入速率概念的同时还必须具体分析体系演化的实际过程,包括:化学反应过程——反应速率,质量传输(迁移)——扩散速率,等等。